
Object-Oriented Programming and Java
 Part III: Object-Oriented Analysis with UML

Course by Mr. Erkki Mattila, M.Sc.
Rovaniemi University of Applied Sciences

OOP - Rovaniemi University of
Applied Sciences

Course Contents

� Part I: Object-Oriented Concepts and
Principles

� Part II: Object-oriented Programming
● Closer look at the concepts of OOP

� Part III: Object-oriented Analysis and
Design
● Using Unified Modeling Language (UML) in

OOA and OOD

OOP - Rovaniemi University of
Applied Sciences

Unified Modelling Language
� Several different notations for describing

object-oriented designs were proposed in the
1980s and 1990s.

� The Unified Modelling Language is an
integration of these notations.

� It describes notations for a number of
different models that may be produced during
OO analysis and design.

� It is now a de facto standard for OO
modelling.

OOP - Rovaniemi University of
Applied Sciences

UML Inputs

Meyer
Pre- and post- conditions

UML

Rumbaugh Jacobson

Booch

Odell
Classification

Schlaer-Mellor
Object life cycles

Gamma at al.
Frameworks,
patterns, notes

Embly
Singleton classes

Wirfs-Brock
Responsibilities

Fusion
Operation descriptions,
message numbering

Harel
State charts

OOP - Rovaniemi University of
Applied Sciences

Evolution of the UML
� The first public draft (version 0.8) in October 1995.
� Versions 0.9 and 0.91 in 1996 included Ivar Jacobson’s

input.
� Version 1.0 was presented for standardization in July

1997.
� Additional enhancements were incorporated into the 1.1

version, presented in September 1997.
� In November 1997, the UML was adopted as the

standard modeling language by the Object Management
Group (OMG)

� The current version is 2.0, the previous release was 1.5

OOP - Rovaniemi University of
Applied Sciences

Object-Oriented Analysis

� The intent of OOA is to define all classes
that are relevant to the problem, and the
relationships and behaviour associated
with them

� OOA provides you with a concrete way
to represent your understanding of
requirements and then test that
understanding against the customer’s
perception of the system to be built

OOP - Rovaniemi University of
Applied Sciences

Tasks for Object-Oriented Analysis

1) Basic user requirements must be
communicated between customer and
software engineer

2) Classes must be identified
3) A class hierarchy is defined
4) Object-to-object relationships should be

represented
5) Object behaviour must be modeled
6) Tasks 1 to 5 are reapplied iteratively until the

model is complete

Pressman R., Software Engineering, A Practitioner’s Approach, Sixth Edtion, McGraw-Hill, 2005

OOP - Rovaniemi University of
Applied Sciences

What Is a Use Case?
� Formal description: Use case is a series of steps

an actor performs on a system to achieve a goal.
� Informal description: A Use case is a description

of one small task the user would do when using
the system.

● Something that the user wants to accomplish, e.g. I
would like to borrow a book.

� Each use case constitutes a complete course of
action initiated by an actor, and it specifies the
interaction that takes place between an actor
and the system.

OOP - Rovaniemi University of
Applied Sciences

What Is an Actor?
� Informal description: actors are types of users.

● Different types of people or devices that use the
system or product.

● Often relates to the roles people have in a company
● For example, in a library system one actor could be a

customer and another a librarian.
� Formal description: an actor is anything that

communicates with the system or product that is
external to the system itself.

OOP - Rovaniemi University of
Applied Sciences

Use Case Diagrams
� Shows actors and use cases.
� Shows which actors participate to which use

cases.
● A simple line between an actor and a use case

means that the actor is expected to perform that
use case.

� Shows dependency and inheritance
relationships among use cases.

● Details later…

OOP - Rovaniemi University of
Applied Sciences

Requirements for Use Cases
� The use case modelling starts with the identification of

actors and principal use cases for the system.
� Use cases model the system from the end-user’s point of

view
� Use cases should achieve the following objectives:

● To provide a description of how the end-user and the
system interact with one another

● To provide a basis for validation testing
● Use cases and use case diagrams must be

understandable both to the designer and the end-user

OOP - Rovaniemi University of
Applied Sciences

Example: RAMK Course
Registration System

� Students want to register for courses
� Teachers want to select courses to teach
� The Registrar must create the curriculum

and generate a catalogue for the semester
� The Registrar must maintain all the info

about courses, teachers, and students
� The Billing System must receive billing info

from the system

OOP - Rovaniemi University of
Applied Sciences

Questions to Identify Use Cases
� What are the tasks of each actor?
� Will any actor create, store, change,

remove, or read info in the system?
� What use cases will create, store, change,

remove, or read this info?
� Will any actor need to inform the system

about sudden, external changes?
� What use cases will support and maintain

the system?
� Can all functional requirements be

performed by the use cases?

OOP - Rovaniemi University of
Applied Sciences

Example: RAMK Course
Registration System

� The following use cases could be
identified:
● Register for courses
● Select courses to teach
● Request course list
● Maintain course info
● Maintain teacher info
● Maintain student info
● Create course catalogue

OOP - Rovaniemi University of
Applied Sciences

RAMK Course Registration System

Student

Billing System

Register for courses

OOP - Rovaniemi University of
Applied Sciences

RAMK Course Registration System

Teacher

Select courses to teach

Request course list

OOP - Rovaniemi University of
Applied Sciences

RAMK Course Registration System

Registrar

Maintain student info

Maintain teacher info

Maintain course info

Create course catalogue

OOP - Rovaniemi University of
Applied Sciences

Description of a Use Case
� You should always write a description of each use case!
� UML does not provide a standard template for this.
� One common alternative:

Name: Descriptive name of the Use Case
Actors: List of actors which participate to the use case
Pre-conditions: Conditions that must apply when entering the use

case
Description: Informal description
Exceptions: Exceptions
Post-conditions: Conditions that must apply when exiting the use case
Non-functional Requirements: Requirements concerning the system

response time, number of simultaneous users, etc.

OOP - Rovaniemi University of
Applied Sciences

Use Case Relationships
� There are three types of relationships that may

exist between use cases: inclusion and
extension and generalization.

� Include relationship
● Multiple use cases may share pieces of the same

functionality. This functionality is placed in a separate
use case rather than documenting it in every use case
that needs it.

● Include relationships are created between the new
use case and any other use case that “uses” its
functionality.

OOP - Rovaniemi University of
Applied Sciences

Use Case Relationships
● E.g., each use case starts with the verification of

the user. This functionality can be captured in a
User Verification use case, which is then used by
other use cases as needed.

● Include relationship is drawn as a dependency
relationship that points from the base case to the
included use case.

� An extend relationship is used to show:
● Optional behaviour
● Behaviour that is run only under certain

conditions such as triggering an alarm
● Several different flows that may be run based on

actor selection

OOP - Rovaniemi University of
Applied Sciences

RAMK Course Registration System

Teacher

Select courses to teach Request course list

Validate user

<<include>> <<include>>

OOP - Rovaniemi University of
Applied Sciences

Use Case Relationships

<<extend>>

<<include>>

The Included
Use Case

The Extended
Use Case

A Base
Use Case

Another Base
Use Case

OOP - Rovaniemi University of
Applied Sciences

Pay overdraft fee

Pay invoice

<<extend>
>

Accounting
System

Perform
interaction

Buyer

Selle
r

Avoid Use Case Relationships

Do not use generalization (inheritance)
and extension.

 Use inclusion only when necessary.

• Is this diagram understandable to the end-user?

OOP - Rovaniemi University of
Applied Sciences

Exercise
� Choose one of the following:

● You are designing an information system for the
library of the Rovaniemi University of Applied
Sciences

● You are designing an exam registration system for
Rovaniemi University of Applied Sciences

� Write a problem description (user requirements
definition)

● Informal text, maybe one page
� Start the design by identifying the actors and

use-cases
� Draw an UML use-case diagram
� Write a description of each use case

OOP - Rovaniemi University of
Applied Sciences

Example: Problem Description
SafeHome software enables the homeowner to configure the security system
when it is installed, monitors all sensors connected to the security system, and
interacts with the homeowner through a keypad and function keys contained in the
SafeHome control panel.
During installation, the SafeHome control panel is used to “program” and
configure the system. Each sensor is assigned a number and type, a master
password is programmed for arming and disarming the system, and telephone
number(s) are input for dialing when a sensor event occurs.
When a sensor event is sensed by the software, it rings an audible alarm attached
to the system. After a delay time that is specified by the homeowner during system
configuration activities, the software dials a telephone number of a monitoring
service, provides information about the location, reporting and the nature of the
event that has been detected. The number will be re-dialed every 20 seconds until
telephone connection is obtained.
All interaction with SafeHome is managed by a user-interaction subsystem that
reads input provided through the keypad and function keys, displays prompting
messages on the LCD display, displays system status information on the LCD
display. Keyboard interaction takes the following form…

OOP - Rovaniemi University of
Applied Sciences

Example: SafeHome Control
Panel

OOP - Rovaniemi University of
Applied Sciences

Example: Use-Case for System
Activation

1. The homeowner observes a prototype of the
SafeHome control panel to determine if the
system is ready for input. If the system is not
ready, the homeowner must physically close
windows/doors so that the ready indicator is
present. [A not ready indicator implies that a
sensor is open, i.e., that a door or window is
open.]

2. The homeowner uses the keypad to key in a
four digit password. The password is compared
with the valid password stored in the system. If
the password is incorrect, the control panel will
beep once and reset itself for additional input. If
the password is correct, the control panel
awaits further action

OOP - Rovaniemi University of
Applied Sciences

Example: Use-Case for System
Activation (continued)

3. The homeowner selects and keys in stay or
away to activate the system. Stay activates
only perimeter sensors (inside motion
detecting sensors are deactivated). Away
activates all sensors

4. When activation occurs, a red alarm light
can be observed by the homeowner

5. Activation occurs 30 seconds after the stay
or away key is hit

OOP - Rovaniemi University of
Applied Sciences

Example: High-Level Use-Case
Diagram

homeowner

Safe Home

interacts

configures

OOP - Rovaniemi University of
Applied Sciences

Example: Detailed Use-Case Diagram

homeowner

Validate password

Query sensor

Inputs passwords

Inquires zone status

Inquires sensor status

Presses panic button

Activates/deactivates
system

<<include>>

<<include>>

<<include>>

OOP - Rovaniemi University of
Applied Sciences

Tasks for Object-Oriented Analysis

1) Basic user requirements must be
communicated between customer and
software engineer

2) Classes must be identified
3) A class hierarchy is defined
4) Object-to-object relationships should be

represented
5) Object behaviour must be modeled
6) Tasks 1 to 5 are reapplied iteratively until the

model is complete

Pressman R., Software Engineering, A Practitioner’s Approach, Sixth Edtion, McGraw-Hill, 2005

OOP - Rovaniemi University of
Applied Sciences

Identifying Classes and Objects

� Identifying objects/classes begins with the
examination of the problem statement

� Objects are determined by underlining
each noun or noun clause

OOP - Rovaniemi University of
Applied Sciences

How Objects Manifest
Themselves

Class name

Methods

Attributes

Occurrences

Things

External
entities

Roles

Organizational
units

Places

Structures

Pressman R, p.539

OOP - Rovaniemi University of
Applied Sciences

How Objects Manifest
Themselves (continued)

� External entities – (e.g., other systems, devices,
people) that produce or consume information to be
used by a computer-based system

� Things – (e.g., reports, displays, letters, signals) that
are part of the information domain for the problem

� Occurrences or events – (e.g., a property transfer or
the completion of a series of robot movements) that
occur within the context of system operation

OOP - Rovaniemi University of
Applied Sciences

How Objects Manifest
Themselves (continued)

� Roles – (e.g., manager, engineer, salesperson)
played by people who interact with the system

� Organizational units – (e.g., division, group, team)
that are relevant to an application

� Places – (e.g., manufacturing floor or loading dock)
that establish the context of the problem and the
overall function of the system

� Structures – (e.g., sensors, four-wheeled vehicles,
or computers) that define a class of objects or in the
extreme, related classes of objects

OOP - Rovaniemi University of
Applied Sciences

Example: Problem Description
SafeHome software enables the homeowner to configure the security system
when it is installed, monitors all sensors connected to the security system, and
interacts with the homeowner through a keypad and function keys contained in the
SafeHome control panel.
During installation, the SafeHome control panel is used to “program” and
configure the system. Each sensor is assigned a number and type, a master
password is programmed for arming and disarming the system, and telephone
number(s) are input for dialing when a sensor event occurs.
When a sensor event is sensed by the software, it rings an audible alarm attached
to the system. After a delay time that is specified by the homeowner during system
configuration activities, the software dials a telephone number of a monitoring
service, provides information about the location, reporting and the nature of the
event that has been detected. The number will be re-dialed every 20 seconds until
telephone connection is obtained.
All interaction with SafeHome is managed by a user-interaction subsystem that
reads input provided through the keypad and function keys, displays prompting
messages on the LCD display, displays system status information on the LCD
display. Keyboard interaction takes the following form…

OOP - Rovaniemi University of
Applied Sciences

Example: Grammatical Parse
SafeHome software enables the homeowner to configure the
security system when it is installed, monitors all sensors
connected to the security system, and interacts with the
homeowner through a keypad and function keys contained in
the SafeHome control panel.

During installation, the SafeHome control panel is used to
“program” and configure the system. Each sensor is assigned a
number and type, a master password is programmed for
arming and disarming the system, and telephone number(s)
are input for dialing when a sensor event occurs.

OOP - Rovaniemi University of
Applied Sciences

Example: Grammatical Parse
(continued)

When a sensor event is sensed by the software, it rings an
audible alarm attached to the system. After a delay time that is
specified by the homeowner during system configuration
activities, the software dials a telephone number of a
monitoring service, provides information about the location,
reporting and the nature of the event that has been detected.
The number will be re-dialed every 20 seconds until telephone
connection is obtained.

All interaction with SafeHome is managed by a
user-interaction subsystem that reads input provided through
the keypad and function keys, displays prompting messages
on the LCD display, displays system status information on the
LCD display. Keyboard interaction takes the following form…

OOP - Rovaniemi University of
Applied Sciences

Example: Potential Classes
Potential Object/Class General Classification

homeowner role or external entity
sensor external entity

control panel external entity
installation occurrence

system (alias security system) thing
number, type not objects, attributes of sensor

master password thing
telephone number thing

sensor event occurrence
audible alarm external entity

monitoring service organizational unit or external entity

OOP - Rovaniemi University of
Applied Sciences

Group work

� Analyze the problem description and make a
grammatical parse of the text

� You should identify potential classes (nouns) and
operations (verbs)

� Make a list of potential classes and classify them
(external entities, things, etc.)

OOP - Rovaniemi University of
Applied Sciences

Selection Characteristics
� Coad and Yourdon suggest 6 selection

characteristics while considering each potential
class for inclusion in the analysis model. All of
the following must apply.

1. Retained information – the potential class will
be useful during analysis only if information
about it must be remembered so that the
system can function

2. Needed services – the potential class must
have a set of identifiable methods that can
change the value of its attributes in some way

OOP - Rovaniemi University of
Applied Sciences

Selection Characteristics
3. Multiple attributes – during requirement

analysis, the focus should be on “major”
information; an class with a single attribute
may be useful during design, but is probably
better represented as an attribute of another
class

4. Common attributes – a set of attributes can be
defined for the potential class and these
attributes apply to all instances of the class

OOP - Rovaniemi University of
Applied Sciences

Selection Characteristics

5. Common operations – a set of operations can
be defined for the potential class and these
operations apply to all instances of the class

6. Essential requirements – external entities that
appear in the problem space and produce or
consume information that is essential to the
operation of any solution for the system will
almost always be defined as classes in the
requirements model

OOP - Rovaniemi University of
Applied Sciences

Example: Evaluation of Potential
Classes

Potential Class General Classification
homeowner rejected: 1, 2 fail even though 6 applies

sensor accepted: all apply
control panel accepted: all apply

installation rejected
system (alias security system) accepted: all apply

number, type rejected: 3 fails, attributes of sensor
master password rejected: 3 fails

telephone number rejected: 3 fails
sensor event accepted: all apply

audible alarm accepted: 2, 3, 4, 5, 6 apply
monitoring service rejected: 1, 2 fail even though 6 applies

OOP - Rovaniemi University of
Applied Sciences

Group Work

� Analyze potential classes on your list according
to the criteria presented on the previous slides.
Select the ones, which will be included in the
analysis model.

� ”Classes struggle, some classes triumph, others
are eliminated.” – Mao Zedong

OOP - Rovaniemi University of
Applied Sciences

Specifying Attributes

� Attributes describe a class that has been
selected for inclusion in the analysis model

� Study the use cases and the problem description
to select the things that “belong” to the class

� Look for data items that fully define the class and
make it unique in the problem context

� The data items should be refined to elementary
level as shown in the following example.

OOP - Rovaniemi University of
Applied Sciences

Example: Specifying Attributes
for “System” Object

sensor information =
sensor type + sensor number + alarm threshold

alarm response information =
delay time + telephone number + alarm type

activation/deactivation information =
master password + number of allowable tries + +

temporary password
identification information =
system ID + verification phone number +
+ system status

OOP - Rovaniemi University of
Applied Sciences

Defining Methods
� Methods i.e. operations define the behaviour of an

object
� Methods can be generally divided into 4 categories:

● Operations that manipulate data in some way
(e.g., adding, deleting, selecting)

● Operations that perform a computation
● Operations that inquire about the state of an

object
● Operations that monitor an object for the

occurrence of a controlling event

OOP - Rovaniemi University of
Applied Sciences

Defining Methods

� Select the methods that reasonably belong to
the class

● To accomplish this, the grammatical parse is studied
and verbs are isolated. Some of them will be
legitimate methods and can be easily connected to a
specific class

OOP - Rovaniemi University of
Applied Sciences

Example: Defining Methods for
“System” Object

“Sensor is assigned a number and type”, “a
master password is programmed for arming
and disarming the system”

� assign method is relevant for the Sensor
class

� program method will be applied to the
System class

� arm and disarm are methods that apply to
System class

OOP - Rovaniemi University of
Applied Sciences

Finalizing the Object Definition

� The definition of methods is the last step in
completing the specification of a class

� Additional methods may be determined by
considering the “life history” of an object and the
messages that are passing among objects
defined for the system

� Life history of an object can be defined by
recognizing that the object must be created,
modified, manipulated or read in other ways, and
possibly deleted

OOP - Rovaniemi University of
Applied Sciences

Example: Finalizing the
“System” Object

program()
display()
reset()
query()
modify()
call()

system ID
verification phone number
system status
sensor table
sensor type
sensor number
alarm threshold
master password
temporary password
number of tries

System

OOP - Rovaniemi University of
Applied Sciences

Group Work

� Define attributes and methods for the
classes, which you included in your
analysis model
● Remember to refine the data items to

elementary level

OOP - Rovaniemi University of
Applied Sciences

Tasks for Object-Oriented Analysis

1) Basic user requirements must be
communicated between customer and
software engineer

2) Classes must be identified
3) A class hierarchy is defined
4) Object-to-object relationships should be

represented
5) Object behaviour must be modeled
6) Tasks 1 to 5 are reapplied iteratively until the

model is complete

Pressman R., Software Engineering, A Practitioner’s Approach, Sixth Edtion, McGraw-Hill, 2005

OOP - Rovaniemi University of
Applied Sciences

UML Class Diagram

� Most important UML diagram
� Can easily be mapped to code (and back)
� Class diagram elements:

● Classes
● Attributes (visibility, name, type)
● Operations (visibility, name, return value and

parameter types)
● Relationships (generalization, aggregation,

association, dependency)

OOP - Rovaniemi University of
Applied Sciences

Example of a Class in an UML
Class Diagram

Employe
e

name:
stringaddress:
stringdateOfBi
r

th:
DateemployeeNo:

integersocialSecurityNo:
stringdepartment:
Deptmanager:
Employeesala
r

y:
integerstatus: {current, left,

retired}taxCode:
integer.
.

.

join
()leave
()retire
()changeDetails
()

OOP - Rovaniemi University of
Applied Sciences

Example of an UML Class Diagram

OOP - Rovaniemi University of
Applied Sciences

Class Relationship Categories

1) Generalization
▪ Inheritance or realization

2) Aggregation
▪ Special case: composition

3) Association
4) Dependency

OOP - Rovaniemi University of
Applied Sciences

Generalization (Inheritance)
� Classes may be arranged in a class hierarchy

where one class (a superclass) is a
generalisation of one or more other classes
(subclasses).

� A subclass inherits the attributes and operations
from its superclass and may add new methods
or attributes of its own.

� Represented in an UML class diagram with a
solid line with an arrow that points to a higher
abstraction of the present item.

OOP - Rovaniemi University of
Applied Sciences

Generalization (Inheritance)
Employee

Programmer

project
progLanguages

Manager

budgetsControlled
dateAppointed

Project Man-r
projects

Dept. Man-r
department

Strategic Man-r
responsibilities

OOP - Rovaniemi University of
Applied Sciences

Realization (Implementation) of an Interface
� A class implements the abstract

methods of an interface.
� A dotted line with a solid

arrowhead that points from a class
to the interface that it implements.

� Alternatively the lollipop
notation can be used.

● Compact, but you cannot
show the operations of an
interface or any generalization
relationships between
interfaces.

Name of the class
implementing the

interface

<<interface>>

Name

Name of the class
implementing the

interface

Name

OOP - Rovaniemi University of
Applied Sciences

Aggregation
� Shows how classes that are collections are composed of other

classes.
� Models the notion that one object uses another object without

"owning" it and thus is not responsible for its creation or destruction.
� Similar to the part-of relationship in semantic data models.

Assignment
Credits

Exercises
 #Problems
 Description

Solutions
 Text
 Diagrams

OOP - Rovaniemi University of
Applied Sciences

Composition
� Composition is a special form

of aggregation describing the
situation where an object
contains a number of other
objects and when the
containing object is deleted, all
the instances of the objects
that are contained disappear.

� Models the notion of one
object "owning" another and
thus being responsible for the
creation and destruction of
another object.

Government

Minister

OOP - Rovaniemi University of
Applied Sciences

Composition vs. Aggregation

� Composition is a stricter relationship than
aggregation:

1. Member objects cannot exist without the
containing object.

2. A member object can belong to only one
containing object at a time.

� Example of composition: a minister
cannot exist without a government, and a
minister can be a part of only one
government at a time.

OOP - Rovaniemi University of
Applied Sciences

Association
� A solid line that represents

that one entity uses another
entity as part of its behavior.

� May be annotated with
information that describes
the association.

� Used when the relationhip is
permanent: typically one
class has a member variable
of another class type.

Manager

Employee

1

1..*

OOP - Rovaniemi University of
Applied Sciences

Attributes and Associations
� Attributes and associations are exchangeable!

● When the relationship exists between classes in your own class
model, use an association in the UML class diagram

● When the relationship exists between a class in your own class
model and a class from a class library, use an attiribute in a UML
class diagram

Book
-author: String

 is the same as:

Book Authorauthor

OOP - Rovaniemi University of
Applied Sciences

Dependency
� A dotted line with an open arrowhead that shows one

entity depends on the behavior of another entity.
� Used when the relationhip is temporary: typical usages

are to represent that one class instantiates another or
that it uses the other as an input parameter.

ScannerParser

scan(Scanner)

OOP - Rovaniemi University of
Applied Sciences

Qualified Association

University Studen
t- name: string

- address: string
studentID:int 1 0..1

University Studen
t- studentID: int

- name: string
- address: string

1 *

Note
•The change in cardinality (you cannot have two student objects with the same
studentID)

•UML does not specify, where and how the mapping between universities and
students is maintained, only that it is based on studentID’s

•It is not necessary to show object id’s as attributes in diagrams

OOP - Rovaniemi University of
Applied Sciences

Associatio
n

Aggregation

Compositio
n

Person
own
s Car

Workstation

CatTail

Networ
k

Generalization,
inheritance

Car Vehicle

Realization
<<interface>>

VehicleCar

Dependency
(e.g. method call,
method parameter)

Parser Scanner

Summary of Relationships in UML
Class Diagram

1

1..* 1

1
Objects
(Actual
relationships
created on
run-time)

Classes
(Relation-shi
ps created
on compile
time)

nestedClassNested class MyClass

OOP - Rovaniemi University of
Applied Sciences

<<view>
>
Window{abstract,

author = KK
status =
tested}

+size
#visibility: Boolean =
false
-xptr: WinType
/nbrOfPanes+display()
hide()
+create()
-attachXWindow(xwin: WinType*)

+ = public
- = private
=
protected
~ = package
 = unknown

List of
operations
(opt.)

(Attribute and operation can also be given only by
name.)

WinType
Window<Xwindow
>

Class operation
(static)

Tags

Generic
parameters

List of
attributes
(opt.)

• stereotypes, tags, access specifiers, class methods, …

Derived
attribute

Detailed Class Description

OOP - Rovaniemi University of
Applied Sciences

Sidetrack 1: Derived Attributes
� Two areas where data modeling experts disagree is

whether derived attributes and attributes whose
values are codes should be permitted in the data
model.

� Derived attributes are those created by a formula or
by a summary operation on other attributes.

� Arguments against including derived data are based
on the premise that derived data should not be
stored in a database and therefore should not be
included in the data model.

� The arguments in favor are:
● derived data is often important to both managers and users and

therefore should be included in the data model.
● it is just as important, perhaps more so, to document derived

attributes just as you would other attributes
● including derived attributes in the data model does not imply how

they will be implemented: you can programatically ensure the data
integrity.

OOP - Rovaniemi University of
Applied Sciences

Sidetrack 2: Code Values
� A coded value uses one or more letters or numbers

to represent a fact. For example, the value Gender
might use the letters "M" and "F" as values rather
than "Male" and "Female".

� Those who are against this practice cite that codes
have no intuitive meaning to the end-users and add
complexity to processing data.

� Those in favor argue that many organizations have a
long history of using coded attributes, that codes
save space, and improve flexibility in that values can
be easily added or modified by means of look-up
tables.

OOP - Rovaniemi University of
Applied Sciences

Group Work

� Draw an UML class diagram of the classes,
which you included in your analysis model.

OOP - Rovaniemi University of
Applied Sciences

Tasks for Object-Oriented Analysis

1) Basic user requirements must be
communicated between customer and
software engineer

2) Classes must be identified
3) A class hierarchy is defined
4) Object-to-object relationships should be

represented
5) Object behaviour must be modeled
6) Tasks 1 to 5 are reapplied iteratively until the

model is complete

Pressman R., Software Engineering, A Practitioner’s Approach, Sixth Edtion, McGraw-Hill, 2005

OOP - Rovaniemi University of
Applied Sciences

Steps for Creating a Behavioral
Model

� Behavioral model indicates how software will
respond to external events

� Steps to create the model:
● Evaluate all use-cases to understand the sequence of

interaction within the system
● Identify events that drive the interaction sequence and

understand how these events relate to classes
● Create a sequence diagram of each use case
● Build state diagrams to depict the internal behavior of

complex classes

OOP - Rovaniemi University of
Applied Sciences

Creating a Behavioral Model
� Examine the use cases for points of information

exchange
� Example: use-case for a portion of the SafeHome

security function: ”The homeowner uses the keypad to
key in a four digit password. The password is compared
with the valid password stored in the system. If the
password is incorrect, the control panel will beep once
and reset itself.”

� The underlined portions indicate events
● The actor should be identified for each event, the

information that is exchanged noted and any
constraints should be listed

OOP - Rovaniemi University of
Applied Sciences

Creating a Behavioral Model

� Once all events have been identified, they
are allocated to the objects involved
● Put the objects to a sequence diagram (object

name:class name)
● Messages show how events cause flow from

one object to another. Use arrows to indicate
messages between objects in the diagram.

OOP - Rovaniemi University of
Applied Sciences

SE
TALAR

M

M
H

:Ringer

Switch
on

:Light

Press ALARM

Show
time

:Use
r

:Control

Start alarm

Press ALARM

Stop alarm

Press ALARM
Switch
off

09 30

t
{t = alarm time}

Sequence Diagram (Alarm Clock)

OOP - Rovaniemi University of
Applied Sciences

Sequence Diagram Notation
� An object is shown as a box at the top of dashed

vertical line. The vertical line is called object’s lifeline
� Each message is represented by an arrow between

the lifelines of two objects
� Notice: messages = method calls. Each message

must be a call to a method in the target class/object!
� The order in which the messages occur is shown top

to bottom on the page
� Each message is labeled at minimum with the

message name

OOP - Rovaniemi University of
Applied Sciences

Sequence Diagram Notation
� You can show a self-call, a message that an

object sends to itself, by sending the message
arrow back to the same lifeline

� To show when an object is active (processing a
task), you include an activation box

� You can ad conditions to messages, which
indicate when the message is sent (for example
[status>0]

� A dashed arrow indicates a return from a
message; returning from a message is implicit
assumption, so use return arrows only when you
feel they ad clarity

OOP - Rovaniemi University of
Applied Sciences

Sequence Diagram Notation
obj1:Class

object

Object:
Presents application objects.
Time is considered as going
downwards. Object name is
obj1, the class to which it
belongs is Class.

lifeline:Class
Activation:
Shows the period during which
an object is performing an action.
Name :Class means that the
object does not have name but
it belongs to class Class.

:Class1 :Class2

[status>0]msg2
msg1

Message:
Models communication between objects.
Left edge of the diagram is the system
boundary. Optional condition expression
may be attached with the message.

OOP - Rovaniemi University of
Applied Sciences

Asyncronous Messages in
Sequence Diagram

� The half-arrowheads indicate an
asyncronous message
● Does not block the caller, so it can carry on

with its own processing
● Can do one of three things:

• Create a new thread
• Create a new object
• Communicate with a thread that is already running

OOP - Rovaniemi University of
Applied Sciences

Object Creation and Deletion in
Sequence Diagram

� If an object creates another, the message
arrow is pointed to the Object symbol itself
instead of object’s lifeline

� Object deletion is shown with a large X
under the object’s lifeline.
● If an object deletes another, the message

arrow is pointed to the X symbol instead of
object’s lifeline

OOP - Rovaniemi University of
Applied Sciences

Group Work

� Choose one of the use cases you defined earlier
and draw a sequence diagrams of it according to
the guidelines given on the previous slides. Start
by identifying the events and after that allocate
them to objects.

OOP - Rovaniemi University of
Applied Sciences

SET
pressed

Do: showTime

Ready

M/add minutes

H/add hours

SET
pressed

[time = alarm time]

Alarm set

Alarm

Do: fireAlarm

ALARM/switch on
 light

ALARM/switch off light

Set time

Do: showTime

Set Alarm
Do: show
 Time

ALAR
M

SET
pressed

Do: showTime

M/add
minutes

H/add hours

SET
pressed

State diagram (Alarm Clock)

OOP - Rovaniemi University of
Applied Sciences

State Diagram Notation
� State diagram represents active states of a single object

and the events that cause changes between these active
states.

� Steps for creating a state diagram:
● Specify the active states of the class.
● Specify the events that cause the changes between the active

states.
● You may also specify guards; conditions that must be satisfied in

order for a state change to occur (for example: passwd = correct
& noOfTries < maxTries).

● You may also specify actions that occur as a consequence of the
state transition. Actions involve one or more operations of the
object (for example Do: operation name).

OOP - Rovaniemi University of
Applied Sciences

State Diagram Notation: Actions
� Entry: action

● Action is executed when the state is entered
� Exit: action

● Action is executed when the state is exited
� Do: action

● Action is executed while being in the state
� Event: action

● Action is only executed, if moving to the state was caused by the
specified event

� Event: defer
● Handling of the event is deferred (put to an event queue) until we

move to another state, which does not defer it

OOP - Rovaniemi University of
Applied Sciences

Summary

� Sequence diagram shows typical
interactions between domain objects.

� State diagram shows the different states of
a domain object.

� More on UML in Software Engineering
course.

OOP - Rovaniemi University of
Applied Sciences

Group Work

� Choose one of the classes you defined earlier
and create a state diagram of its behaviour
according to the guidelines given on the previous
slides.

� Example: we have a class Book in a library
system. A Book object can be in the following
states: On shelf, Checked out, Returned on hold,
Checked out with hold. Draw an UML state
diagram showing the states and state transitions.

OOP - Rovaniemi University of
Applied Sciences

”Travel light”

� Build only those models that provide value
- no more, no less.

� Perfection is reached, not when there is no
longer anything to add, but when there is
no longer anything to take away. (A.
Saint-Exupery)

