
Plasmids and Plasmid Biology

By

Konrad T. Juszkiewicz, MD, MPH

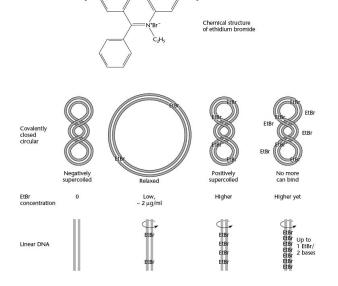
Plasmids and Plasmid Biology

- Plasmid structure
- Plasmid replication and copy number control
- Plasmid transfer
- Plasmids as tools
- F plasmids

Plasmids

- Extrachromosomal DNA, usually circular-parasite?
- Usually encode ancillary functions for in vitro growth
- Can be essential for specific environments: virulence, antibiotics resistance, use of unusual nutrients, production of bacteriocins (colicins)
- Must be a replicon self-replicating

Plasmids


- Plasmid DNA must replicate every time host cell divides or it will be lost
 - a. DNA replication
 - b. partitioning (making sure each progeny cells receives a plasmid)
- High copy plasmids are usually small; low copy plasmids can be large
- Partitioning is strictly controlled

Plasmids

- Plasmid replication requires host cell functions
- Copy number is regulated by initiation of plasmid replication
- Plasmids are incompatible when they cannot be stably maintained in the same cell because they interfere with each other's replication.

Protein and membrane Linear and nicked circular DNA Covalently closed circular DNA RNA After centrifugation RNA

Figure 4.2

Three forms of plasmid DNA

"Old School method of purifying plasmid"

CsCl gradient with ethidium bromide and

TABLE 4.1	Some naturally occurring plasmids and the traits they carry				
Plasmid	Trait	Original source			
ColE1	Bacteriocin which kills E. coli	E. coli			
Tol	Degradation of toluene and benzoic acid	Pseudomonas putida			
Ti	Tumor initiation in plants	Agrobacterium tumefaciens			
pJP4	2,4-D (dichlorophenoxyacetic acid) degradation Alcaligenes eutrophus				
pSym	Nodulation on roots of legume plants Rhizobium meliloti				
SCP1	Antibiotic methylenomycin biosynthesis	Streptomyces coelicolor			
RK2	Resistance to ampicillin, tetracycline, and kanamycin	Klebsiella aerogenes			

Virulence plasmids from Salmonella, Shigella, Yersinia, B. anthracis, E.coli, and others.

TABLE 4.2	Copy numbers of some plasmids
Plasmid	Approximate copy number
F	1
P1 prophage	1
RK2	4–7 (in <i>E. coli</i>)
pBR322	16
pUC18	~30–50
plJ101	40–300

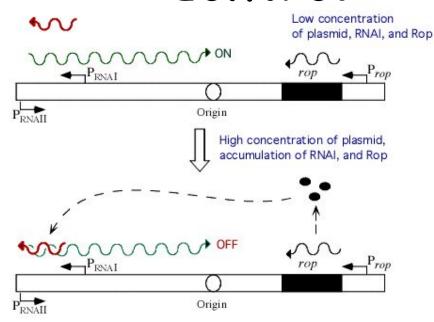
Table 11-1 Examples of some plasmids and their properties

Plasmid	Size (Kb)	Number of copies per chromosome	Self- transmissible	Phenotypic features
Col plasmids				
CoIE1	6.4	10-15	No	Colicin E1 disrupts energy gradient, host immunity to Colicin E1
CoIE2	7.6	10-15	No	Colicin E2 is a DNase, host immunity to Colicin E2
CoIE3	7.6	10-15	No	Colicin E3 is a ribosomal RNase, host immunity to Colicin E3
F plasmid	94.5	1-2	Yes	F-pilus, conjugation
R plasmids				
R100	106.7	1-2	Yes	Cam ^r Str ^r Sul ^r Tet ^r
RK2	56.0	5-8	Yes	Broad host range
pSC101	9.0	<5	No	Low copy number, compatible with ColE1-type plasmids, Tet f
Phage plasmid				ş:
λdv	6.4	50	No	λ genes cro, cl, O, P
Recombinant				V.
plasmids				
pBR322	4.4	20	No	Medium copy number, ColE1-type replication, Amp ^r
pUC18	2.7	200–500	No	High copy number, ColE1-type replication with a mutation that increases the copy number, Amp ^r
pACYC184	4.0	10–12	No	Cam ^r Tet ^r

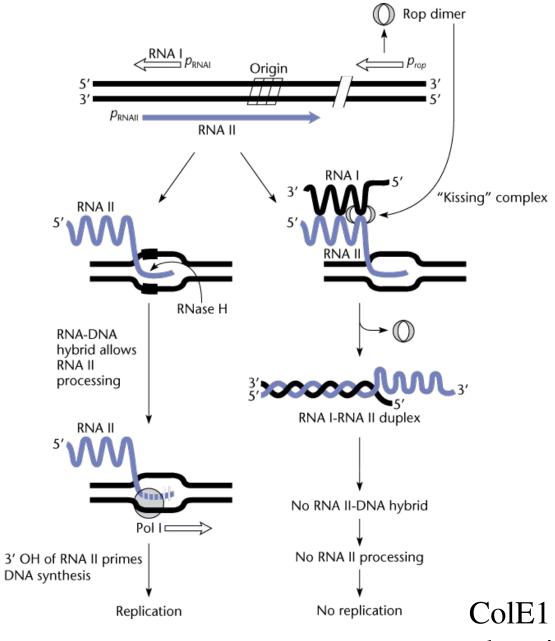
Plasmid replication

- Plasmid replication requires host DNA replication machinery.
- Most wild plasmids carry genes needed for transfer and copy number control.
- All self replication plasmids have a oriv: origin of replication
- Some plasmids carry and oriT: origin of transfer. These plasmids will also carry functions needed to be mobilized or mob genes.

Plasmid replication


- Plasmid segregation is maintained by a par locus-a partition locus that ensures each daughter cells gets on plasmid.
 Not all plasmids have such sequences.
- There are 5 main "incompatibility" groups of plasmid replication. Not all plasmids can live with each other.
- Agents that disrupt DNA replication destabilize or cure plasmids from cells

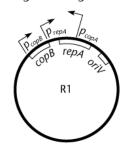
Antisense RNA gene control.


- -the RNA-RNA hybrid is very stable
- -blocks most translation and tanscription
- -requires RNAases to degrade
- -common theme in bacterial gene regulation as we are learning

Anti-sense RNA replication control

RNA I-small inhibitory RNA that binds to RNAII. RNAII will act as a primer for DNA replication Rop: plasmid encoded proteins which stabilizes the RNAI-RNAII complex

Antisense RNA: RNA-RNA hybrid blocks replication GGCUAAUUCC Antisense RNA is also used in euks called CCGAUUAAGG siRNA Blocking RNA priming for DNA PolI prevents replication

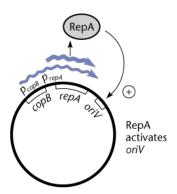

ColE1 Replication

Control-an example of primer control of replication

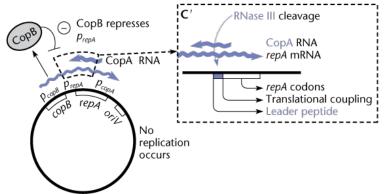
- RNAII will serve as a primer for the replication fork.
- The 3' end is processed by host RnaseH to allow efficient RNA-DNA hybrid to form
- The hybrid acts as a primer for host Pol1
- As the concentration of plasmid increases, Rop does also
- Rop stabilizes the RNA1-II complex
- No RNA for replication priming.

ColE1 replication does not need plasmid encoded rep proteins

A Plasmid genetic organization


Promoter Gene products expressed

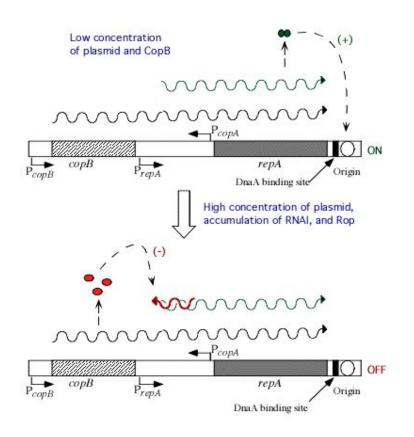
 p_{copB} RepA and CopB


 p_{repA} RepA

 p_{copA} 90-nucleotide CopA antisense RNA

B Replication occurs after plasmid enters cells

C Replication shutdown



The events upon entry into a cell

- RepA mRNA is made from Prep until copy number becomes high
- CopB expression increase an Cop represses RepA expression at PrepA
- CopA now is made-a
 90base antisense RNA
- CopA binds to 5-end of the RepA mRNA, forming dsRNA
- This is recognized by host RNAaseIII and degraded.

Thus concentration of RepA protein is maintained by rate of RNA-RNA hybrid formation.

Rep-protein control -R1 family of plamsids.

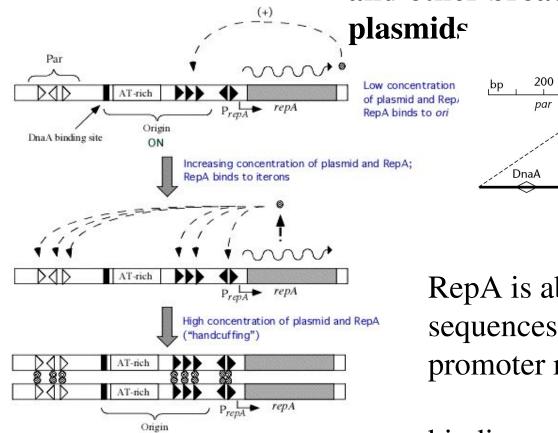
Plasmid copy control balanced by host RNaseIII activity and transcription from the plasmid

- Rep-protein expression controlled by antisense
 CopA
- PcopB-encodes Rep and CopB
- PcopA-encodes antisenseRNA
- plasmid replicates to high level
- CopB levels rise, shutting off RepA production
- antisense RNA from PcopA made

Iteron Plasmids: Handcuffing RK2 and other broad host range

400

600


inc

R1 R2 R3

800

repA

1000

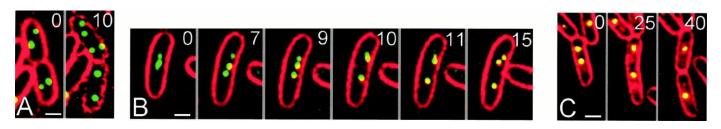
"copy up" mutants: mutations in RepA that are less able to bind to each other.

OFF

RepA is able to bind the repeat sequences upstream of the promoter region for *repA*.

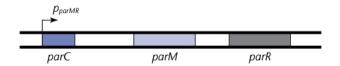
Figure 4.8

1200

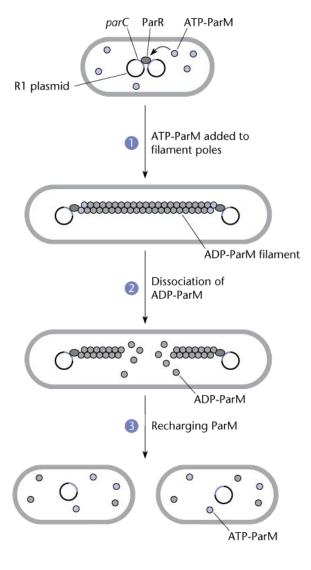

- •binding causes two plasmid molecules to couple "handcuff"
- •prevents replication.

Incompatibility Groups

- Not all plasmids can live together.
- Plasmids that are able to coexist in the same cell do not interfere with each other's replication
- A single cell can have as many Inc group plasmids as it can tolerate and replicate!


Partion Locus: a region on broad host range plasmids that binds to a structure on the inner membrane of the cell to ensure proper segregation.

Plasmids labeled with fluorescent protein -move to each daughter cell during division.



Pogliano, Joe et al. (2001) Proc. Natl. Acad. Sci. USA 98, 4486-4491

A parCMR locus

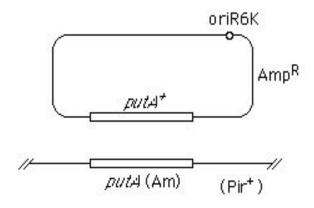
B Plasmid R1 partitioning

Par locus

- think of this as a primitive centromere
- the growing filaments push the plasmids to the opposite poles of the cells

Plasmids as genetic tools: Construction of Mutants

Site-directed mutation: Suicide


- 1. Plasm**PlasmPlas** be unable to replicate without essential replication proteins provide *in trans*.
- It helps if the plasmid can be mobilized-oriT required
- 3. Need a selectable marker
- 4. Large or small region of homologous DNA cloned that will integrate into the chromosomal target.
- 5. Need a counter selection method to kill the donor cells

Alsgamerpeipleid reporteristrains repute constructed in this manner

- 1. Make a lacZ fusion to your promoter of interest
- 2. Clone into a suicide plasmid
- 3. Mate into recipient.
- 4. Resulting strain will harbor a duplication of the promoter region: *lacZ* and still have a functional copy of the gene.

Why would this be important?

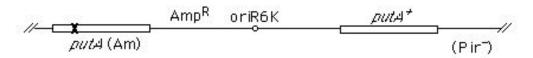
(a)

The plasmid will replicate in a Pir⁺
host. Hence, the cell will be Put⁺ due
to complementation from the put⁴
gene encoded by the multicopy plasmid.

oriR6K

AmpR

AmpR

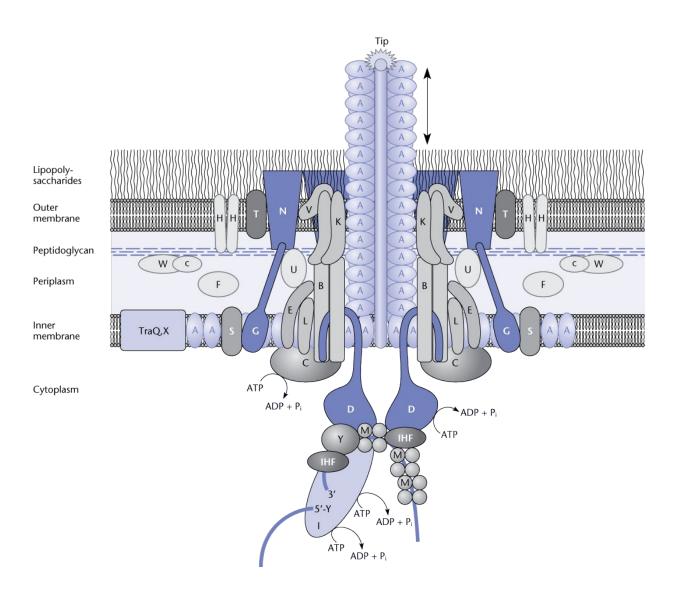

AutA (Am) (Pir)

The plasmid cannot replicate in a Pir host. However, it is possible to select for integration into the chromosome by demanding Amp^R. Once integrated, the cell will be Put⁺ due to complementation from the copy of put4⁺ encoded by the integrated plasmid. (This is only true if the plasmid copy has its own promoter. What would happen if the plasmid copy of put4 gene lacks a promoter?)

R6K: broad host plasmid.

- -Pir is the essential replication protein -pir mutants cannot replicate unless supplied in trans.
- -integration into the chromosome is selected for by growth on ampicillin

How could you make targeted mutant using this method?



F-plas mid

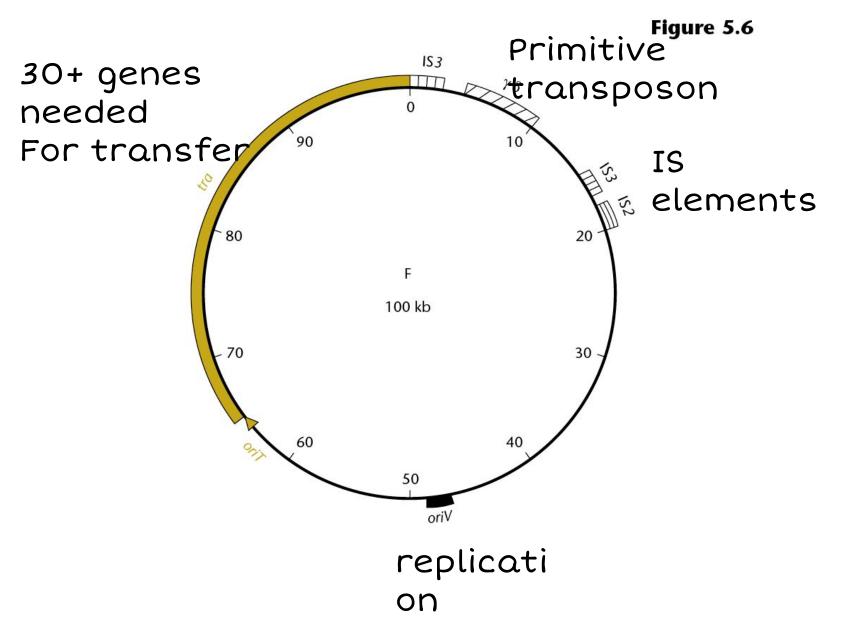
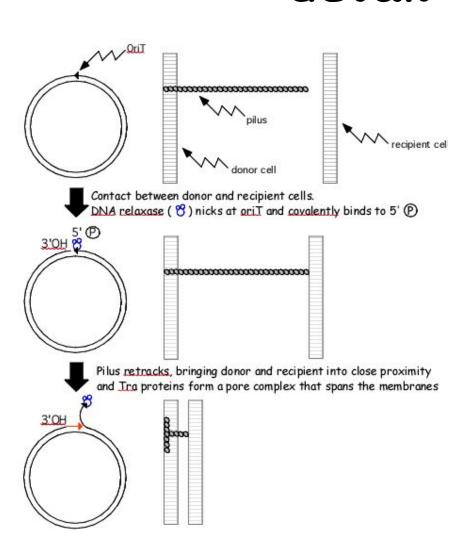
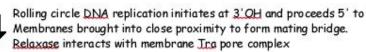
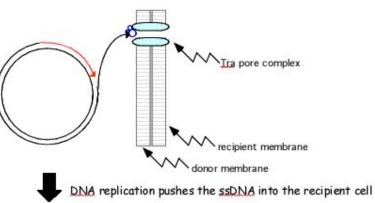
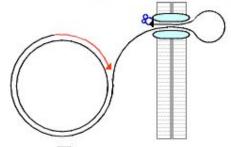

- 1. large (100 kb)
- 2. low copy (1-2 copies/cell)
- 3. self transmissible
- requires protein synthesis (chloramphenicol-sensitive)
- 5. repE gene encodes RepE protein
- RepE protein binds to origin of replication (oris) and initiates DNA replication
- 7. RepE binds to the *repE* promoter and activates transcription
- RepE binds to the copA/incC locus binding copies of F together via RepE – inhibiting replication (coupling)

TABLE 5.1 Some F-plasmid genes and sites				
Symbol	Function			
ccdAB	Inhibition of host cell division			
incBCE	Incompatibility			
oriT	Site of initiation of conjugal DNA transfer			
oriV	Origin of bidirectional replication			
sopAB	Partitioning			
traABCEFGHKLQUVWX	Pilus biosynthesis, assembly			
traGN	Mating-pair stabilization			
traD	Coupling protein			
tral	Relaxase			
traYM	Accessories for relaxosome			
traJ, finOP	Regulation of transfer			
traST	Entry exclusion			

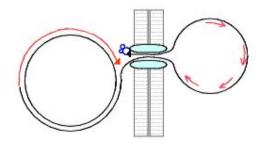

F Pilus assembly




Genetic organization of F



F-transfer at fine detail



Lagging strand <u>DNA</u> replication in recipient cell converts <u>ssDNA</u> to <u>dsDNA</u>

Upon complete replication of plasmid, the old and new ori T sites "collide" and nicking between ori T sites occurs

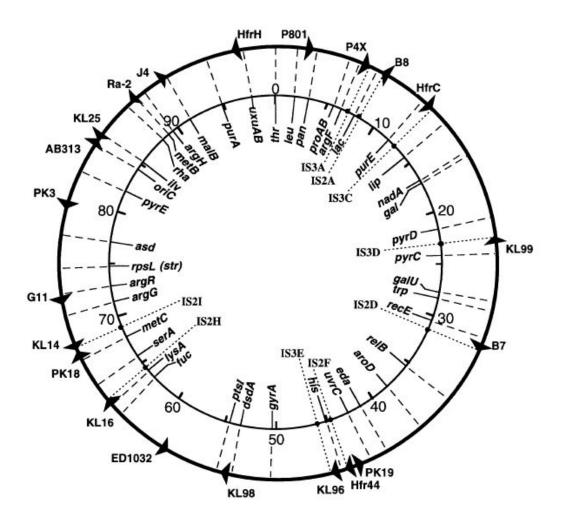


FIGURE 1 Approximate map positions of integrated sex factors (F, F₁₅-lac, of ColV) for some Hfr strains. See Table 1 for commonly used derivatives of these strains. The sequence of chromosomal genes transferred from a given strain begins behind the arrowhead; e.g., HfrH transfers genes in the order uxuAB, thr, leu, etc. The positions of the IS sequences which appear to correlate with the sites of F insertion for some of the Hfrs are indicated and can be found on the physical map in chapter 129.