Class 5

Optimization models
 Demand function equation. Revenue maximization. Profit maximization. BEPs.

Study materials: Slides

Demand function

What shall we do with our selling Price, if:
$P_{1}=\$ 1,000$, then $Q_{1}=400$ units, and $R_{1}=\$ 400,000$
$P_{2}=\$ 1,750$, then $Q_{2}=250$ units, and $R_{2}=\$ 437,500$ To do:
(a) increase the price, or
(b) decrease the price, or
(c) keep the price at $\$ 1,750$?

SOLUTION: The price that MAX the revenue shall be: \$2,250, \$2,000, \$1,750, \$1,500, \$1,250?

Demand function

Correct answer:

The "best" price to MAX the revenue would be: $\$ 1,500$
$P_{\text {opt }}=\$ 1,500$, then Qopt $=300$ units, and $\operatorname{Rmax}=\$ 450,000$ To do:
(a) increase the price
(b) decrease the price
(c) keep the price at $\$ 1,750$

This can be solved through (1) finding the demand function equation, and (2) solving a revenue maximization problem.

Demand function

Can be found using the approaches:

Sales tests:

$$
\begin{aligned}
& \text { P1, Q1 } \\
& \text { P2, Q2 }
\end{aligned}
$$

Quantity (u)	Price (\$)
250	1750
350	1250

NB: Demand function is not always linear.
$P(M A X)$ and $Q(M A X)$ are indicative.
Sales test not always linear.
Need to offset the effect of seasonality.

Demand Function Equation

$Y=a+b * X$, basic linear equation
$P=a+b^{*} Q$, demand function equation
where:
$\mathrm{a}=\mathrm{P}(\mathrm{MAX}$ in the market $)=3,000$
$b=$ slope of the demand function line
$=$ delta $\mathrm{Y} /$ delta $\mathrm{X}=-5$
$Q(M A X)=-a / b=600$ (units)

NB: Mind the negative value of the variable coefficient of the linear equation"b".

Task: Revenue maximization

$$
Q^{*}(\text { Revenue MAX })=-a / 2 b=300(u)
$$

Substitute Q* into the Demand function equation, will find P^{*} (= the price at Q^{*} point)

$$
\begin{aligned}
& \mathrm{P}^{*}=3,000+(-5)^{*} 300=\$ 1,500 \\
& \mathrm{R}^{*}=\mathrm{P}^{*} \times \mathrm{Q}^{*}=450,000
\end{aligned}
$$

NB: R^{*} is highest revenue possible at the current demand.

Profit maximization

Q** (Profit MAX) = - (a-VC(u)) / 2b

$P^{* *}$ shall correspond to the value of $Q^{* *}$
Data needed: fixed and variable costs FC $=\$ 100,000$ $\mathrm{VC}(\mathrm{u})=\$ 500$
$Q^{* *}=250(u)$, then
$P^{* *}=1,750$, then
$R^{* *}=437,500$, and
$\mathrm{Pr}^{* *}=\mathrm{R}^{* *}-\mathrm{FC}-\mathrm{VC}(\mathrm{u}) \mathrm{Q}^{* *}=\$ 212,500$
Pr** is highest operating profit possible at the current demand and total costs

Summary

	Quantity (u)	Price (\$)	Revenue (\$)	Op Profit (\$)
Demand function	250	$1,750$	$437,500$	$212,500$
			$437,500$	
Fixed Costs	100,000			
VC(u)	500			
b	-5			
a	3,000			
	Quantity (u)	Price (\$)	Revenue (\$)	Op Profit (\$)
Qmax	600	0	0	-400,000
Q*(Revenue)	300	1,500	450,000	200,000
Q** (Profit)	250	1,750	437,500	212,500
Discriminant	4,250,000	SqRoot	2,062	
	Quantity (u)	Price (\$)	Revenue (\$)	Op Profit (\$)
Q1	43.84	2,781	121,922	0
Q2	456.16	719	328,078	0
Nota bene:				
input cells				
results ($\mathrm{u}, \$$)				

