Class 5

Optimization models

Demand function equation. Revenue maximization. Profit maximization. BEPs.

<u>Study materials:</u> Slides

WIUU RM, Fall 2012, A. Zaporozhetz

Demand function

What shall we do with our selling Price, if: $P_1 = \$1,000$, then $Q_1 = 400$ units, and $R_1 = \$400,000$ $P_2 = \$1,750$, then $Q_2 = 250$ units, and $R_2 = \$437,500$ To do: (a) increase the price, or

- (b) decrease the price, or
- (c) keep the price at \$1,750?

```
SOLUTION: The price that MAX the revenue shall be:
$2,250,
$2,000,
$1,750,
$1,500,
```

Demand function

Correct answer:

The "best" price to MAX the revenue would be: \$1,500

Popt = \$1,500, then Qopt = 300 units, and RMAX = \$450,000 To do: (a) increase the price (b) decrease the price

(c) keep the price at \$1,750

This can be solved through (1) finding the demand function equation, and (2) solving a revenue maximization problem.

Demand function

Can be found using the approaches:

Sales tests:	
P1, Q1	
P2, Q2	

Quantity (u)	Price (\$)
250	1 750
350	1 250

NB: Demand function is not always linear.
 P(MAX) and Q(MAX) are indicative.
 Sales test not always linear.
 Need to offset the effect of seasonality.

WIUU RM, Fall 2012, A. Zaporozhetz

Demand Function Equation

 $Y = a + b^*X$, basic linear equation

 $P = a + b^*Q$, demand function equation

where: a = P(MAX in the market) = 3,000 b = slope of the demand function line = delta Y/ delta X = -5

Q(MAX) = -a/b = 600 (units)

NB: Mind the negative value of the variable coefficient of the linear equation "b".

Task: Revenue maximization

 $Q^{*}(Revenue MAX) = -a/2b = 300 (u)$

Substitute Q* into the Demand function equation, will find P* (= the price at Q* point)

P*= 3,000 +(-5)*300 = \$1,500

R* = P* x Q* = 450,000

NB: R* is highest revenue possible at the current demand.

Profit maximization

 Q^{**} (Profit MAX) = - (a - VC(u)) / 2b P** shall correspond to the value of Q^{**}

```
Data needed:

fixed and variable costs

FC = 100,000

VC(u) = 500

Q** = 250(u), then
```

```
P** = 1,750, then
```

R** = 437,500, and

 $Pr^{**} = R^{**} - FC - VC(u)Q^{**} = $212,500$

*Pr** is highest operating profit possible at the current demand and total costs*

WIUU RM, Fall 2012, A. Zaporozhetz

Summary

	Quantity (u)	Price (\$)	Revenue (\$)	Op Profit (\$)
Demand	250	1,750	437,500	212,500
function	350	1,250	437,500	162,500
Fixed Costs	100,000			
VC(u)	500			
b	-5			
а	3,000			
	Quantity (u)	Price (\$)	Revenue (\$)	Op Profit (\$)
Qmax	600	0	0	-400,000
Q*(Revenue)	300	1,500	450,000	200,000
Q** (Profit)	250	1,750	437,500	212,500
Discriminant	4,250,000	SqRoot	2,062	
	Quantity (u)	Price (\$)	Revenue (\$)	Op Profit (\$)
Q1	43.84	2,781	121,922	0
Q2	456.16	719	328,078	0
Nota bene:				
input cells				
results (u, \$)			> a > a > a > a > a > a > a > a > a > a	

6