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Prime Numbers

• An integer p is a prime number if it has no 
factors other than 1 and itself.

• An integer which is greater than 1 and not a 
prime number is said to be composite.

• Thus given a composite number c we know 
that c=r*s for some non-trivial integers r 
and s.
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Factorisation

• Given an integer n, there is an efficient 
algorithm to determine whether n is 
composite or prime.

• However determining the factors of a large 
composite number is a very hard problem.

• Known as the factorisation problem – this 
is the basis of the RSA cryptosystem.
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• The fastest factorisation algorithm at the 
moment is called the “Number Field Sieve” 
but even this is not all that efficient.

• To find the factors of a composite number n 
which is the product of 2 large primes, and 
has about 640 binary bits (approximately 
200 decimal digits) is an impossible task 
even if you could use all of the computing 
power in the world!
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Important to Note:

1. Determining whether a large number is 
prime or composite is easy;

2. Multiplying 2 large numbers together is 
easy;

3. Factorising a large number which is the 
product of 2 large primes (i.e. retrieving the 
original prime factors) is very difficult.
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Fermat’s Little Theorem

If p is a prime number and a is any number 
between 1 and p-1 inclusive, then

ap-1 mod p = 1

This is not true in general, which gives 
us a method to decide if a given number 
n is prime or composite.
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Solving a problem
Suppose I have
•  a prime number p;
• a number m between 1 and p-1 inclusive;
• another number e also between 1 and p-1;
And I compute
•  c = me mod p
If I give you c,e and p can you find m?
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Yes you can if you take the following steps:

1. Find a number d such that e*d=1 mod p-1
2. Compute cd mod p = m
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Why does that work?

1. We found d such that e*d = 1 mod p-1
That means that e*d – 1 = k(p-1) for some 
value of k.
Or

ed = k(p-1) +1
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2. We computed cd mod p
But cd = (me)d  mod p
     = med mod p
     = mk(p-1) +1 mod p
    = mk(p-1) * m mod p
    = 1*m mod p
    = m mod p  
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• This works because of Fermat’s Little 
Theorem.

• We know that since p is a prime we have 
ap-1=1 mod p for all a and so 
ck(p-1) = 1 mod p leaving us with the answer 
m in step 2.

• BUT if the modulus is not a prime number 
then the method doesn’t work.
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Why doesn’t it work?

• In general an-1 ≠ 1 mod n if n is not prime.

• We could make the method for finding m  
work if we knew the number r such that

            ar = 1 mod n
    If a and n are co-prime then there will be 

such a number r and there is a way to find it                    
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Finding r
• In order to find r such that ar = 1 mod n, 

you have to be able to factorise n and find 
all of its prime factors.

• If n = p*q where p and q are primes then  

 r = (p-1)*(q-1)
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Important to note now:

1. It is easy to determine whether a large number 
is prime or composite.

2. It is easy to compute the product of two large 
primes n = p*q.

3. Setting r = (p-1)*(q-1) we have
mr = 1 mod n

for all m co-prime with n.
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4. Given e (co-prime with r), it is easy to 
determine d such that

(e*d) =1 mod r
5. It is easy to compute me  mod n
6. If c=me mod n then m=cd mod n and it is 

easy to compute cd  mod n if you know d.
7. You can only find d if you can find r and 

you can only find r if you can factorise n.
8. Factorising n is hard.
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9. This is the basis of the RSA public key 
cryptosystem. The holder of the public key 
knows p and q and therefore he/she can find 
r and therefore d and can compute cd mod n 
to find m.

10.  No-one else knows p and q, so they cannot 
find r or d and so they cannot recover m.

11. There is no known way to recover m which 
is not equivalent to factorising n.
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RSA – Key Generation

1. Bob generates two large primes p and q 
(each with approx. 100 decimal digits).

2. He computes n = p*q
3. He computes r = (p-1)*(q-1)
4. He chooses a random number e which is 

between 1 and r which has no factor in 
common with r.
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5. He computes the private key d by solving 
the equation (e*d) =1 mod r.

6. He can now carefully dispose of the values 
of p, q and r.

7. Bob keeps d private but publishes the value 
of the pair (e,n). This is his public key.
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RSA - Encryption

Alice wishes to send Bob a message m.  She 
takes the following steps:

1. She looks up Bobs public key pair (e,n) .
2. She computes c=me mod n and sends the 

value of c to Bob
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RSA - Decryption

Bob receives the value c from Alice. He 
decrypts it using his private key d by 
computing

m=cd mod n
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Notes

• The message m must be smaller than n. 
Alice breaks her message up into blocks 
each with a value less than n and encrypts 
each of these blocks individually.

• The public key can be used by anyone 
wishing to send Bob a message. He does not 
need a separate key pair for each 
correspondent.


