
1

RSA

2

Prime Numbers

• An integer p is a prime number if it has no
factors other than 1 and itself.

• An integer which is greater than 1 and not a
prime number is said to be composite.

• Thus given a composite number c we know
that c=r*s for some non-trivial integers r
and s.

3

Factorisation

• Given an integer n, there is an efficient
algorithm to determine whether n is
composite or prime.

• However determining the factors of a large
composite number is a very hard problem.

• Known as the factorisation problem – this
is the basis of the RSA cryptosystem.

4

• The fastest factorisation algorithm at the
moment is called the “Number Field Sieve”
but even this is not all that efficient.

• To find the factors of a composite number n
which is the product of 2 large primes, and
has about 640 binary bits (approximately
200 decimal digits) is an impossible task
even if you could use all of the computing
power in the world!

5

Important to Note:

1. Determining whether a large number is
prime or composite is easy;

2. Multiplying 2 large numbers together is
easy;

3. Factorising a large number which is the
product of 2 large primes (i.e. retrieving the
original prime factors) is very difficult.

6

Fermat’s Little Theorem

If p is a prime number and a is any number
between 1 and p-1 inclusive, then

ap-1 mod p = 1

This is not true in general, which gives
us a method to decide if a given number
n is prime or composite.

7

Solving a problem
Suppose I have
• a prime number p;
• a number m between 1 and p-1 inclusive;
• another number e also between 1 and p-1;
And I compute
• c = me mod p
If I give you c,e and p can you find m?

8

Yes you can if you take the following steps:

1. Find a number d such that e*d=1 mod p-1
2. Compute cd mod p = m

9

Why does that work?

1. We found d such that e*d = 1 mod p-1
That means that e*d – 1 = k(p-1) for some
value of k.
Or

ed = k(p-1) +1

10

2. We computed cd mod p
But cd = (me)d mod p
 = med mod p
 = mk(p-1) +1 mod p
 = mk(p-1) * m mod p
 = 1*m mod p
 = m mod p

11

• This works because of Fermat’s Little
Theorem.

• We know that since p is a prime we have
ap-1=1 mod p for all a and so
ck(p-1) = 1 mod p leaving us with the answer
m in step 2.

• BUT if the modulus is not a prime number
then the method doesn’t work.

12

Why doesn’t it work?

• In general an-1 ≠ 1 mod n if n is not prime.

• We could make the method for finding m
work if we knew the number r such that

 ar = 1 mod n
 If a and n are co-prime then there will be

such a number r and there is a way to find it

13

Finding r
• In order to find r such that ar = 1 mod n,

you have to be able to factorise n and find
all of its prime factors.

• If n = p*q where p and q are primes then

 r = (p-1)*(q-1)

14

Important to note now:

1. It is easy to determine whether a large number
is prime or composite.

2. It is easy to compute the product of two large
primes n = p*q.

3. Setting r = (p-1)*(q-1) we have
mr = 1 mod n

for all m co-prime with n.

15

4. Given e (co-prime with r), it is easy to
determine d such that

(e*d) =1 mod r
5. It is easy to compute me mod n
6. If c=me mod n then m=cd mod n and it is

easy to compute cd mod n if you know d.
7. You can only find d if you can find r and

you can only find r if you can factorise n.
8. Factorising n is hard.

16

9. This is the basis of the RSA public key
cryptosystem. The holder of the public key
knows p and q and therefore he/she can find
r and therefore d and can compute cd mod n
to find m.

10. No-one else knows p and q, so they cannot
find r or d and so they cannot recover m.

11. There is no known way to recover m which
is not equivalent to factorising n.

17

RSA – Key Generation

1. Bob generates two large primes p and q
(each with approx. 100 decimal digits).

2. He computes n = p*q
3. He computes r = (p-1)*(q-1)
4. He chooses a random number e which is

between 1 and r which has no factor in
common with r.

18

5. He computes the private key d by solving
the equation (e*d) =1 mod r.

6. He can now carefully dispose of the values
of p, q and r.

7. Bob keeps d private but publishes the value
of the pair (e,n). This is his public key.

19

RSA - Encryption

Alice wishes to send Bob a message m. She
takes the following steps:

1. She looks up Bobs public key pair (e,n) .
2. She computes c=me mod n and sends the

value of c to Bob

20

RSA - Decryption

Bob receives the value c from Alice. He
decrypts it using his private key d by
computing

m=cd mod n

21

Notes

• The message m must be smaller than n.
Alice breaks her message up into blocks
each with a value less than n and encrypts
each of these blocks individually.

• The public key can be used by anyone
wishing to send Bob a message. He does not
need a separate key pair for each
correspondent.

