Images, Mirrors and Lenses Adapted from J.M. Gabreilse For Grade 11 Physics

Objectives:

- To draw ray diagrams
- To see how real and virtual images are formed
- To use different object distances and focal lengths to create different sized images
- To gain a working knowledge of the terms: real image, virtual image, upright, inverted, magnified and diminished.

Real or Virtual Images

- Real Images are formed when light ray do come together to form an image.
- Virtual images are formed when light rays seem to come together to form an image.
- Sight lines are extensions of light rays needed to show the perceived virtual image.
- Sight lines are dashed lines in ray diagrams.

Symbols Used

Plane Mirrors (flat mirrors)

How do we see images in mirrors?

Plane Mirrors (flat mirrors)

How do we see images in mirrors?

Light reflected off the mirror converges to form an image in the eye.

Plane Mirrors (flat mirrors)

How do we see images in mirrors?

Light reflected off the mirror converges to form an image in the eye.

The eye perceives light rays as if they came through the mirror. Imaginary light rays extended behind mirrors are called sight lines.

Plane Mirrors (flat mirrors)

How do we see images in mirrors?

Light reflected off the mirror converges to form an image in the eye.
The eye perceives light rays as if they came through the mirror.
Imaginary light rays extended behind mirrors are called sight lines.
Image is virtual since it is formed by imaginary sight lines, not real light rays.
J.M. Gabrielse

Spherical Mirrors (concave \& convex)

Concave \& Convex Mirrors are part of a sphere

C: the center point of the sphere
r: radius of curvature $=$ the radius of the sphere
halfway between C and the

Concave Mirrors
 (caved in)

optical axis

Light rays that come in parallel to the optical axis reflect through the

Concave Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}>\mathrm{d}_{\mathrm{f}}$)

J.M. Gabrielse

Concave Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}>\mathrm{d}_{\mathrm{f}}$)

optical axis

The first ray comes in parallel to the optical axis and reflects through the

Concave Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}>\mathrm{d}_{\mathrm{f}}$)

Concave Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}>\mathrm{d}_{\mathrm{f}}$)

The first ray comes in parallel to the optical axis and reflects through the focal point. The second ray comes through the focal point and reflects parallel to the optical axis.

A real, inverted, diminished image forms where the light rays converge.

Concave Mirror
 (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

Concave Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

optical axis

The first ray comes in parallel to the optical axis and reflects through the

Concave Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

optical axis

The first ray comes in parallel to the optical axis and reflects through the focal point.
The second ray comes through the and reflects parallel to the optical axis.

Concave Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

The second ray comes through the focal point and reflects parallel to the optical axis.
The image forms where the rays converge. But they don't seem to converge.

Concave Mirror
 Extend light rays with dashed sight lines

The first ray comes in parallel to the optical axis and reflects through the focal point.
The second ray comes through the focal point and reflects parallel to the optical axis.
A virtual, upright, magnified image forms where the sight rays converge.

Your Turn (Object distance $d_{o}>2 d_{f}$)

concave mirror

- Note: mirrors are thin enough that you just draw a line to represent the mirror
- Locate the image of the arrow

Your Turn (Object distance: $\mathrm{d}_{0}>2 \mathrm{~d}_{\mathrm{f}}$)

concave mirror

- Note: mirrors are thin enough that you just draw a line to represent the mirror
- Locate the image of the arrow

A real, inverted same size image is formed.

Convex Mirrors (curved out)

Light rays that come in parallel to the optical axis reflect from the
The is considered virtual since sight lines, not light rays, go through it.

Convex Mirror (Object distance $d_{o}>2 d_{f}$)

optical axis

Convex Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}>2 \mathrm{~d}_{\mathrm{f}}$)

optical axis

The first ray comes in parallel to the optical axis and reflects through the

Convex Mirror (Object distance: $\mathrm{d}_{\mathrm{o}}>2 \mathrm{~d}_{\mathrm{f}}$)

The first ray comes in parallel to the optical axis and reflects through the focal point. The second ray comes through the and reflects parallel to the optical axis.

The first ray comes in parallel to the optical axis and reflects through the focal point. The second ray comes through the focal point and reflects parallel to the optical axis. The light rays don't converge, but the sight lines do.

Convex Mirror
 (Object distance: $\mathrm{d}_{0}>2 \mathrm{~d}_{\mathrm{i}}$)

The first ray comes in parallel to the optical axis and reflects through the focal point.
The second ray comes through the focal point and reflects parallel to the pptical axis. The light rays don't converge, but the sight lines do.

A virtual, upright, diminished image forms where the sight lines converge.

Your Turn (Convex Mirror)

- Note: mirrors are thin enough that you just draw a line to represent the mirror
- Locate the image of the arrow

Your Turn (Convex Mirror)

convex mirror

- Note: mirrors are thin enough that you just draw a line to represent the mirror
- Locate the image of the arrow

Lensmaker's Equation

$$
\begin{aligned}
& f=\text { focal length } \\
& d_{o}=\text { object distance } \\
& d_{i}=\text { image distance }
\end{aligned}
$$

if distance is negative the image is behind the mirror

Magnification Equation

$$
\begin{array}{r}
m=\frac{h_{i}}{h_{0}}=\frac{d_{i}}{d_{0}} \\
\begin{array}{c}
m=\text { magnification } \\
h_{i}=\text { image height } \\
h_{0}=\text { object height }
\end{array}
\end{array}
$$

If height is negative the image is upside down
if the magnification is negative the image is inverted (upside down)

Refraction (bending light)

Refraction is when light bends as it passes from one medium into another.

When light traveling through air passes into the glass block it is refracted towards the

When light passes back out of the glass into the air, it is refracted away from the

Since light refracts when it changes mediums it can be aimed. Lenses are shaped so light is aimed at a

Lenses

The first telescope, designed and built by Galileo, used lenses to focus light from faraway objects, into Galileo's eye. His telescope consisted of a concave lens and a convex lens. \begin{tabular}{c}
convex

\hline

light from

object

convex

\hline $\begin{array}{c}\text { light from } \\
\text { object }\end{array}$
\end{tabular}

convex convex
lens

Concave Lenses

Concave lenses are thin in the middle and make light rays diverge (spread out).

If the rays of light are traced back (dashed sight lines), they all intersect at the focal point (F) behind the lens.

Concave Lenses

optical axis

Concave Lenses

optical axis

Light rays that come in parallel to the optical axis still diverge from the

Concave Lens
 (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

optical axis

The first ray comes in parallel to the optical axis and refracts from the focal point.

Concave Lens
 (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

The first ray comes in parallel to the optical axis and refracts from the focal point.
The second ray goes straight through the center of the lens

Concave Lens
 (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

The first ray comes in parallel to the optical axis and refracts from the focal point. The second ray goes straight through the center of the lens.

The light rays don't converge, but the sight lines do.

Concave Lens (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

The first ray comes in parallel to the optical axis and refracts from the focal point.
The second ray goes straight through the center of the lens.
The light rays don't converge, but the sight lines do.
A virtual, upright, diminished image forms where the sight lines converge. J.M. Gabrielse

Your Turn
 (Object distance: $\mathrm{d}_{0}>2 \mathrm{~d}_{\mathrm{f}}$)

concave lens

- Note: lenses are thin enough that you just draw a line to represent the lens.
- Locate the image of the arrow.

Your Turn (Object distance: $\mathrm{d}_{0}>2 \mathrm{~d}_{\mathrm{f}}$)

concave lens

- Note: lenses are thin enough that you just draw a line to represent the lens.
- Locate the image of the arrow. A virtual, upright, diminished image forms where the sight lines converge.

Convex Lenses

Convex lenses are thicker in the middle and focus light rays to a focal point in front of the lens.

The focal length of the lens is the distance between the center of the lens and the point where the light rays are focused.

Convex Lenses

optical axis

Convex Lenses

Light rays that come in parallel to the optical axis converge at the

Convex Lens (Object distance: $\mathrm{d}_{0}<\mathrm{d}_{\mathrm{f}}$)

The first ray comes in parallel to the optical axis and refracts through the

Convex Lens

(Object distance: $\mathrm{d}_{0}<\mathrm{d}_{\mathrm{f}}$)

The first ray comes in parallel to the optical axis and refracts through the focal point.
The second ray goes straight through the center of the lens.

Convex Lens (Object distance: $\mathrm{d}_{\mathrm{o}}<\mathrm{d}_{\mathrm{f}}$)

ptical axis

The first ray comes in parallel to the optical axis and refracts through the focal point.
The second ray goes straight through the center of the lens.
The light rays don't converge, but the sight lines do.

Convex Lens (Object distance: $d_{o}<d_{f}$)

The first ray comes in parallel to the optical axis and refracts through the focal point. The second ray goes straight through the center of the lens. The light rays don't converge, but the sight lines do.

Your Turn (Object distance: $\mathrm{d}_{0}>2 \mathrm{~d}_{\mathrm{f}}$)

optical axis
convex lens

- Note: lenses are thin enough that you just draw a line to represent the lens.
- Locate the image of the arrow.

Your Turn (Object distance: $\mathrm{d}_{0}>2 \mathrm{~d}_{\mathrm{f}}$)

convex lens

- Note: lenses are thin enough that you just draw a line to represent the lens.
- Locate the image of the arrow.

Your Turn (Object distance: $\mathrm{d}_{\mathrm{o}}=2 \mathrm{~d}_{\mathrm{f}}$)

convex lens

- Note: lenses are thin enough that you just draw a line to represent the lens.
- Locate the image of the arrow.

A real, inverted, same size image forms where the light rays converge.

Thanks/Further Info

- Faulkes Telescope Project: Light \& Optics by Sarah Roberts
- Fundamentals of Optics: An Introduction for Beginners by Jenny Reinhard
- PHET Geometric Optics (Flash Simulator)
- Thin Lens \& Mirror (Java Simulator) by Fu-Kwun Hwang

