Описание двигателя

• Общие сведения

V-образный 6-ти цилиндровый, угол развала блока 60⁰, рабочий объём 2.5 л, 24-клапана, система газораспределения DOHC с механизмом VVT-i, на впуске и выпуске, система ACIS электронный дроссель (система ETCS-i)

4GR-FSE

Система D-4 [Непосредственное впрыскивание]

Описание двигателя • Характеристики 4GR-FSE

Поворотный Клапан управления впуском электромагнитный воздуха клапан системы Топливный ACIS насос высоко Два давления механизма VVT-i Ппита распредвалов Непосредственное Гидрокомпенсатор впрыскивание (D-4) клапанного зазора Форсунка Проставка с щелевым соплом рубашки охлаждения

Описание двигателя

• Основные характеристики

	4GR-FSE
Число и расположение цилиндров	6, V-образно
Механизм газораспределения	24-клапана, DOHC, цепной привод, два VVT-і
Тип камеры сгорания	Шатровая
Раб. Объём, ст ³	2499
Диаметр цилиндра x ход поршня mm	83.0 x 77.0
Степень сжатия	12.0
Макс. мощность кВт @ обор.	152 @ 6,400
(л.с. @ обор.)	(204 @ 6,400)
Макс. кр. момент N·m @ обор.	250 @ 4,800

Cylinder Head

- Camshaft housing to simply the cylinder head structure
- Camshaft bearing cap for IN and EX is one piece

Cylinder Head

- Camshaft and camshaft housing installation

Cylinder Head

- Camshaft and camshaft housing installation

Cylinder Head

- Camshaft and camshaft housing installation

Cylinder Block

 Water jacket spacer optimizes the cylinder bore temp. to reduce friction

• Cylinder Block

- Spiny liner is used to increase cooling performance

Piston

 Optimal piston head shape to promote the mixture of fuel and air

Bearing

 Bearing without bearing claw is used for crankshaft bearings and connecting rod bearings

- Installation of Crankshaft Upper Bearing
 - Bearing position should be centered to the cylinder block journal to align the oil hole

- Installation of Crankshaft Lower Bearing, Connecting Rod Upper and Lower Bearings
 - Bearing should be positioned in center and measure the position
 Difference Between "B" and "C": 0.7 mm (0.028 in.) or less

- Crankshaft Bearing (upper and lower)
 - Combination of different width of the Bearings

General

Camshaft

 VVT-i system is used for intake & exhaust camshafts (Dual VVT-i)

Camshaft Timing Rotor VVT-i Controller

Assist Spring ______ Controller

Exhau

Camshaft

 RH bank exhaust camshaft is provided with the cam to drive the high-pressure fuel pump

Timing Chain

 Three timing chains to drive intake and exhaust camshafts of each bank

- Chain Tensioner
 - Primary chain tensioner
 - Ratchet type non-return mechanism

Service hall for remove and replace

- Chain Tensioner
 - 2 secondary chain tensioners are used for left and right bank

Left Bank

- Hydraulic Lash Adjuster
 - Maintaining a constant zero valve clearance through use of oil pressure and spring force

- Hydraulic Lash Adjuster
 - Start cam lift, plunger is pressed and oil in high pressure chamber is kept

- Hydraulic Lash Adjuster
 - Then the rocker arm pushes the valve by using hydraulic lash adjuster as a fulcrum

- Hydraulic Lash Adjuster
 - Plunger pushes back, check valve is opened and fills up oil

- Hydraulic Lash Adjuster
 - Plunger is pushed up, then, valve clearance is maintained at zero

Plunger

Plunger

Spring

• 1. Pushing check ball down by using SST

- - 2. Immerse hydraulic lash adjuster in clean engine oil, then compress and return the plunger with SST 5 to 6 times

- - 3. Press the plunger by finger and check the blockage of plunger

- - If plunger is compressed after 3 times trial, replace to new one

Lubrication System

- Oil Delivery Pipe
 - Oil delivery pipe is used to lubricate cam and rocker arm

Lubrication System

- Oil Filter (2WD)
 - Element replacing type oil filter is used

Service Point (Lubrication Systema)/D) Oil filter replacement

- - Removal

Remove filter element

Loosen the filter cap for approx. 4 rev.

Align the cap rib vertically and drain oil

Service Point (Lubrication Systema)/D) Oil filter replacement

- - Removal

Remove oil filter cap and filter element

Remove filter element and O-ring from filter cap

Service Point (Lubrication Systema)/D) Oil filter replacement

- - Installation

Install filter element Ne Nė W

Set new filter element and O-ring

Install filter cap using SST

Service Point (Lubrication Systema)/D) Oil filter replacement

- - Installation

Refill engine oil

Run the engine and check oil leakage

Intake and Exhaust System

ACIS Valve

- Rotary solenoid type ACIS valve is used
- ACIS valve is unified by laser-welding

Reference (Intake & Exhaust System)

Rotary solenoid type ACIS valve is used

ACIS Valve

Intake and Exhaust System

- Intake Air Control Valve
 - Intake air control valve is operated by DC motor

Intake and Exhaust System

Intake Air Control Valve

Operation

General

- 4GR-FSE engine uses D-4 System

D-4 (Direct injection 4-stroke gasoline engine)

Difference from usual gasoline EFI

Reference

Features of D-4 System

Direct Injection

Slit-nozzle Injector

High Pressure Injection

Piston head shape is changed for D-4 system

Improved volumetric efficiency

Expanded knocking limit

Fuel does not adhere to the intake port

Higher atomization of fuel

High Performance

Clean Emission

Better Fuel Economy

High-Pressure Fuel Pump

- Supplies the high pressure fuel to the delivery pipe

High-Pressure Fuel Pump

– Fuel control operation (SCV close timing is **late**)

High-Pressure Fuel Pump

- Fuel control operation (SCV close timing is **early**)

Delivery Pipe

 Stores high-pressure fuel (4 – 13 MPa) produced by high-pressure fuel pump

- Delivery Pipe
 - Fuel pressure sensor

Injector

– High pressure, slit-nozzle type injector

Injector

– Slit-nozzle makes sector formed injection

D-4 System

- Injector
 - Construction

from Delivery

Injector

 When remove the injector from cylinder head, replace the injector seal using new SST

Injector

- Replacement of injector seals (using SST)

1. Remove injector seals

2. Attach the guide (SST)

Injector

- Replacement of injector seals (using SST)

3. Install a new injector

4. Slide the the injector seal into the injector groove

- Injector
 - Replacement of injector seals (using SST)

5. Settle the injector seal

6. Install a new injector seal

Injector

- Replacement of injector seals (using SST)

7. Slide the injector seal into the injector groove

8. Fully align the injector seal

- Injector
 - Replacement of injector seals (using SST)

9. Settle the injector seal

10. Fully align the injector seal

Injector

– Replacement of injector seals (using SST)

11. Check the injector seals

EDU (Electronic Driver Unit)

Drives the injectors at high speed

Ignition System

Spark Plug

Long-reach type spark plug to improve cooling performance on cylinder head

Charging System

- Alternator Pulley
 - One-way clutch is used in the pulley to absorb engine fluctuation

Service Point (Charging System) Using a SST, when remove or install the alternator

System Alternator pulley cap is non-reusable part

Engine Control System

D-4 EFI Control (for 4GR-FSE)

D-4 EFI conducts the injection volume control and injection timing control simultaneously

Engine Control System

D-4 EFI Control (for 4GR-FSE)

 At cold start, weak stratification combustion to improve TWC worm-up performance

Reference (Engine Control

System)trol (for 4GR-FSE)

- Weak stratification combustion
 - Creates rich and lean portions of air-fuel mixture within the combustion chamber

Engine Control System

VVT Sensor

 4 MRE type VVT sensors are used for intake and exhaust camshaft of each bank

Reference (Engine Control System) Output signal is digital waveform

Reference (Engine Control

- The resistance of MRE is changed by the magnetic flux direction

Reference (Engine Control

MRE Type

 Signal output at extremely low speed rotation can be ensured

Sensor Sensor Sensor Sensor Sensor Time No Detecting Detection Sensor Time

Pickup Coil Type

Reference (Engine Control System)or

 By the adoption of MRE type VVT sensor, ECM can detects the sensor low input or high input malfunction

Engine Control System

Dual VVT-i (Variable Valve Timing – intelligent)
– VVT-i is used for intake and exhaust camshafts

Spatenny)T-i

- Following 14 DTCs are added by adoption of exhaust

DTC No.	Detection Item	DTC No.	Detection Item
P0013	Camshaft Position "B" Actuator Circuit (Bank 1)	P0025	Camshaft Position "B" - Timing Over-Retarded (Bank 2)
P0014	Camshaft Position "B" - Timing Over-Advanced or System Performance (Bank 1)	P0365	Camshaft Position Sensor "B" Circuit (Bank 1)
P0015	Camshaft Position "B" - Timing Over-Retarded (Bank 1)	P0367	Camshaft Position Sensor "B" Circuit Low Input (Bank 1)
P0017	Crankshaft Position - Camshaft Position Correlation (Bank 1 Sensor B)	P0368	Camshaft Position Sensor "B" Circuit High Input (Bank 1)
P0019	Crankshaft Position - Camshaft Position Correlation (Bank 2 Sensor B)	P0390	Camshaft Position Sensor "B" Circuit (Bank 2)
P0023	Camshaft Position "B" Actuator Circuit (Bank 2)	P0392	Camshaft Position Sensor "B" Circuit Low Input (Bank 2)
P0024	Camshaft Position "B" - Timing Over-Advanced or System Performance (Bank 2)	P0393	Camshaft Position Sensor "B" Circuit High Input (Bank 2)

Engine Control System

Cranking Hold Function

 Once the power mode is turned to "Engine Starting", starter operates until engine starting

Reference (Engine Control System)Id Function

Reference (Engine Control

Judgment of the engine firing

- Maximum cranking time

Reference (Engine Control System) Id Function Protection during engine starting

If the engine speed becomes 1200 rpm or more while cranking, engine ECU (ECM) stops starter to prevent starter overrun

Reference (Engine Control System) Id Function Protection during engine starting

Starter overheating protection operates starter max.30 sec. with intentional starter operation

Engine Control System

- Communication
 - CAN (Controller Area Network) communication for DLC3 and other ECUs

