
Ventilator Discontinuation: The evidence base and "best practice"

> Neil MacIntyre MD Duke University Durham NC USA

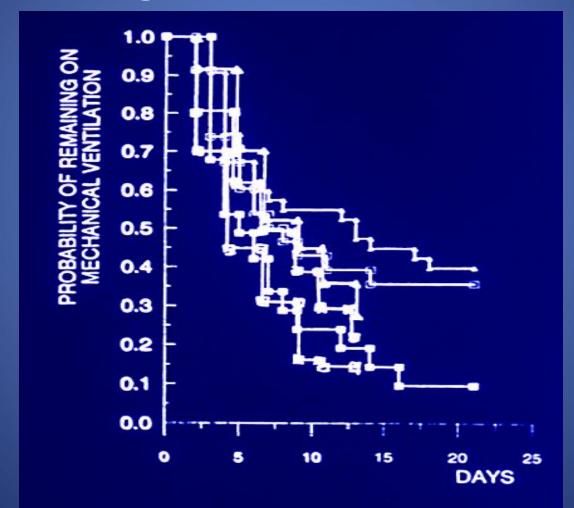
Ventilator dependency reflects an imbalance in loads/capacities

Ventilator dependency can also be iatrogenic

- Failure to recognize discontinuation potential
- Imposed loading:
 - insufficient support
 - insensitive/unresponsive triggers
 - flow dys-synchrony
 - cycle dys-synchrony
- Inefficient weaning "rules"
- Unnecessary sedation:
 - Kollef et al (1999) demonstrated sedation protocols reduce ventilator time

The Ventilator Discontinuation Process - EBM Projects

- AHCPR McMaster comprehensive evidence based review
 - 5000 papers screened
 - Over 150 quality trials systematically analyzed
 - Published Nov 1999


The Ventilator Discontinuation Process - EBM Projects

- ACCP/SCCM/AARC Task Force
 - Organized May 1999
 - Used McMaster report + own research + consensus to "fill in the gaps"
 - Developed 12 evidence based guidelines
 published in Chest Supplement December 2001

McMaster EBM Review - significant LRs

	Parameter	Number of	studies	Threshold values	Range of	positive LRs		
А	A. Measured on ventilator							
	Minute ventilation	n 20		10-15 L/min	.8	1 to 2.37		
	Negative insp forc	ce 10		-20 to -30 cm H20	.2	3 to 2.45*		
	Pi max	16		-15 to -30 cm H20	9. 0	8 to 3.01		
	PO.1/MIP	4		.30	2.	14 to 25.3		
	CROP	2		13	1.	05 to 19.74		
B. Measured during a 1-2 minute period of spontaneous breathing								
	Respiratory rate	24		30 to 38	1.	00 to 3.89		
	Tidal volume	18	32	25-408 ml (4-6 ml/kg	;) .7	1 to 3.83		
	Resp rate/tidal vol	lume 20		60 to 105 /L	.8	4 to 4.67		
	(f/Vt r	ratio)						

Although statistically significant, LRs not high enough to drive decisions in isolation No strategy has been shown to be faster than daily SBTs with an "integrated " assessment

- Criteria for considering vent discontinuation:
 - stability/reversal of respiratory failure
 - P/F > 150-200, PEEP < 5-8, FiO2 < 0.4-0.5, pH > 7.25
 - hemodynamic stability (no pressors/inotropes)
 - capable of reliable insp efforts

SBT is most effective way of assessing d/c potential: 5 cm H2O PS, 5 cm H2O CPAP, ATC, T-piece T-piece closest to mimicking extubation "Integrated assessment" Vent pattern – especially change Gas exchange – especially change Hemodynamics – especially change "Comfort" 30-120 min - 1st 1-5 minutes needs close monitoring

ET tube removal requires ability to protect airway

- Cough is essential
 - Cough velocity (>1 l/sec)
 - White card test
 - Suctioning frequency
- Less important:
 - Gag reflex present
 - Cuff leak
 - Alertness GCS 8 adequate
- Expected extubation failures: 10-15%

Routine daily SBTs shortens weaning

NEJM 1996;335:1864

Parameter	Intervention (149 Patients)	Control (151 Patients)	P value
APACHE II score	19.8	17.9	0.01
Weaning days	1	3	0.0001
Ventilator days	4.5	6	0.003
Reintubation (%)	6 (4)	15 (10)	0.04
Mechanical ventilation >21 days (%)	9 (6)	20 (13)	0.04
Any complication (%)	30 (20)	62 (41)	0.001
Total ICU costs	\$15,740	\$20,890	0.03

For patients who fail the SBT:

Search for reversible causes

In between the daily SBT:

- Address the reversible aspects of load/capabilities imbalance:
 - Loads:
 - improve mechanics (edema, airways)
 - metabolic demands
 - Capabilities
 - nutrients/electrolytes
 - provide adequate DO2 to vent muscles (CO*,Hb)
 - adrenal function
 - SEDATION STRATEGIES SAT vs targeted protocols?

*removal of intrathoracic pressure may precipitate heart failure

- For patients who fail the SBT:
 - Search for reversible causes
 - Repeat SBTs q 24 hrs in those maintaining clinical stability
 - In between, provide stable and comfortable assisted ventilation
 - Little data demonstrating gradual support reduction reduces VLOS – likely wastes resources and risks fatigue

In between daily SBTs

• Properly load the muscles:

- "Normalize" amount of load
 - avoid atrophy, avoid fatigue
- "Optimize" comfort with synchronous flow delivery throughout the breath
 - sensitive/responsive triggering
 - responsive (variable) flow with EVERY breath
 - proper breath termination (cycling)
- Maintain this level without change until next SBT
 - "Weaning" this level has never been shown to improve outcomes

Practical aspects of "normalized", comfortable loading

- Triggering max sensitivity, "balance" PEEPi with applied PEEP
- Pressure/flow targets
 - Variable flow easier to synchronize with effort therefore pressure targeted modes (PS, PA) best
 - Operational pressure range 10-25 cm H2O start at 15 and titrate to breathing pattern, comfort
- Cycling PS uses flow, PA uses time adjust to comfortable I:E

Newer approaches to improving synchrony

- Proportional assist ventilation
 Pressure and flow driven by sensed pt flow
- Neurally adjusted ventilator assistance
 - Pressure and flow driven by diaphragm EMG

All have theoretical appeal and have been shown to support patient effort – However, no meaningful outcome data

- For patients who fail the SBT:
 - Search for reversible causes
 - Repeat SBTs q 24 hrs in those maintaining clinical stability
 - Stable comfortable support no need to "wean"

- For patients who fail the SBT:
 - Search for reversible causes
 - Repeat SBTs q 24 hrs in those maintaining clinical stability
 - Stable comfortable support no need to "wean"

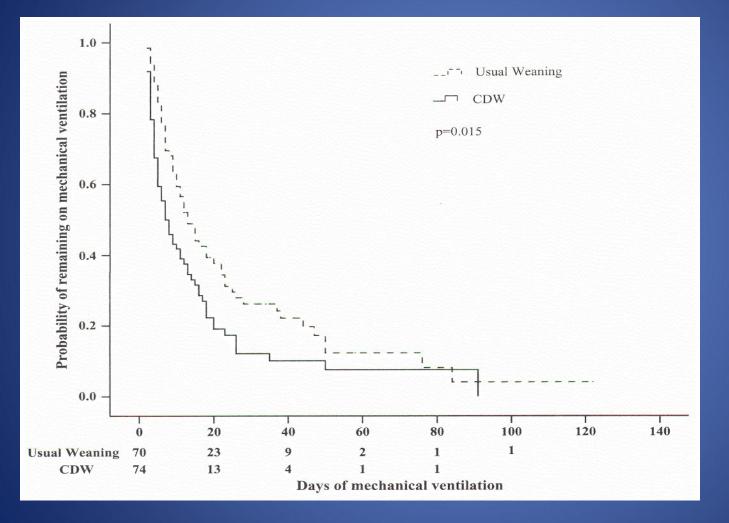
Is this what is happening?

2174 Successfully Discontinued (> 12 hrs support)

• 55% simple

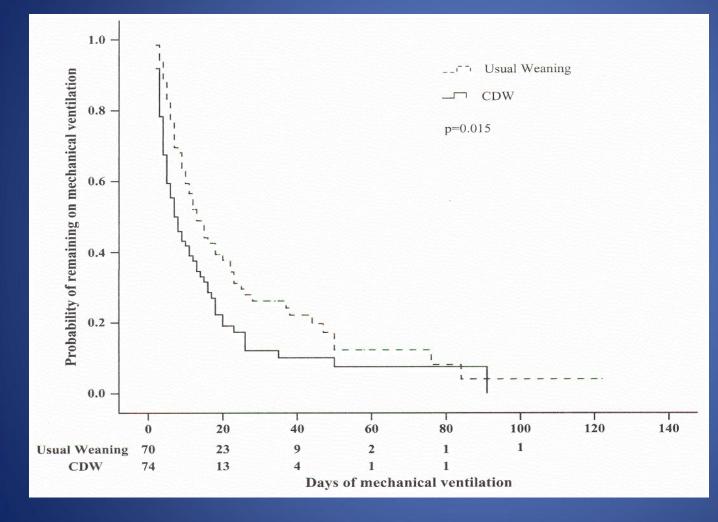
- 82% SBTs only, "wean"* 18%
- 39% complex (3 SBT)
 47% SBTs, "wean"* 53% at first
 then "wean"* 71%/SBTs 29%
- 6% prolonged (> 7)
 - 38% SBTs, 62% "wean"* at first
 - then "wean"* 80%/SBTs 20%

*62-71% PSV, 26-29% SIMV


Can weaning be automated?

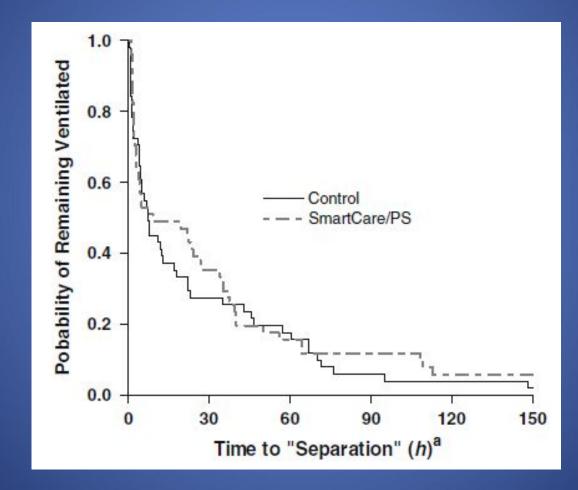
- Assumes that gradual support reductions help – evidence supporting this is weak
 Pressure support reductions based on various
 - feedback algorithms
 - VS target VT
 - Smart Care target VT, MV, ETCO2

Volume Support (VS, ASV)


- Adjusts pressure to targeted tidal volume
- In theory:
 - As patient recovers, bigger VT, VS drops PS
- In practice:
 - Too high a VT selected no PS reductions
 - Too low a VT selected patient overloaded
 - Transient increased efforts from pain/anxiety leads to inappropriate PS reduction
- NO outcome data

SmartCare I

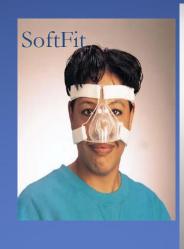
Lellouche, AJRCCM 2006; 174: 894


SmartCare I

Control group used SBTs but may have been done only 50%

Lellouche, AJRCCM 2006; 174: 894

SmartCare II


Int Care Med 2008;34:1788

So is there a role for automatic PS reductions?

- No evidence that says this facilitates muscle recovery
- Patient tolerance to decreasing PS could signal clinicians to initiate SBTs (weaning and weaning success diagnostic, not therapeutic):
 - Rapidly recovering patient (overdose, post op)
 - Slowly recovering after many failed SBTs (PMV population)



NIV and Vent Discontinuation: Two Scenarios

- The failed/borderline SBT but good airway protection
 - Supportive evidence, especially in COPD
- The failed extubation:
 - Supportive evidence in COPD
 - May delay life saving intubation in other forms of ARF

Conclusions

- Ventilator dependency is not only disease induced but can be iatrogenic
- Good evidence supports daily screening and SBTs success enhanced with sedation protocols
- Successful SBTs need a separate airway protection assessment before extubation
- Failed SBTs need 24 hrs of stable support while causes of ARF further addressed – then SBT
- Automated strategies may have utility in rapidly recovering, or PMV (marker, not cause, of recovery)
- NIV useful in selected patients (mostly COPD)