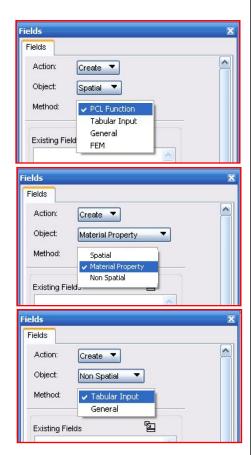
## **SECTION 8**

**FIELDS** 

PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 1

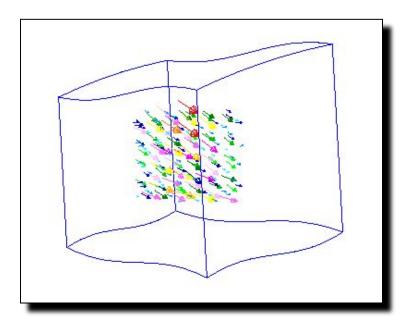
#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation


S8 - 2

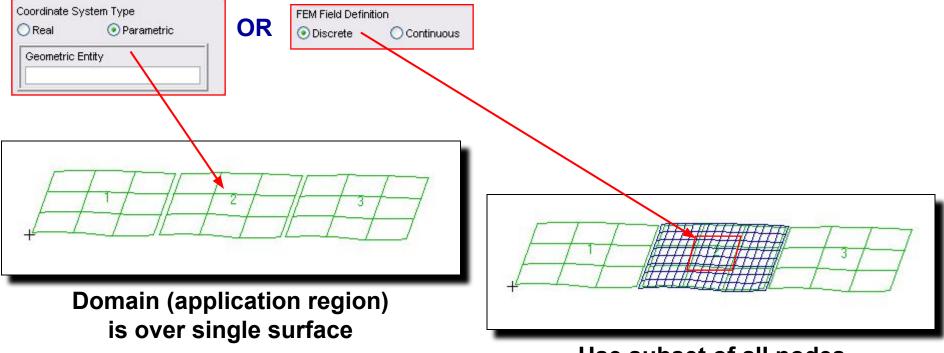
### **FIELDS**

- Fields (functions) allow the creation and modification of a multitude of data sets. Data fields are used in the following modeling areas:
  - Loads and boundary conditions
  - Material properties
  - Element properties
- Field input can either be tabular or continuous functions, with the input being scalar or vector.
- Complex (number) scalar fields are also permitted if the Nastran analysis preference is used.
  - This allows, for example, real/imaginary or magnitude/phase components of a frequency dependent function to be defined.

### **TYPES OF FIELDS**

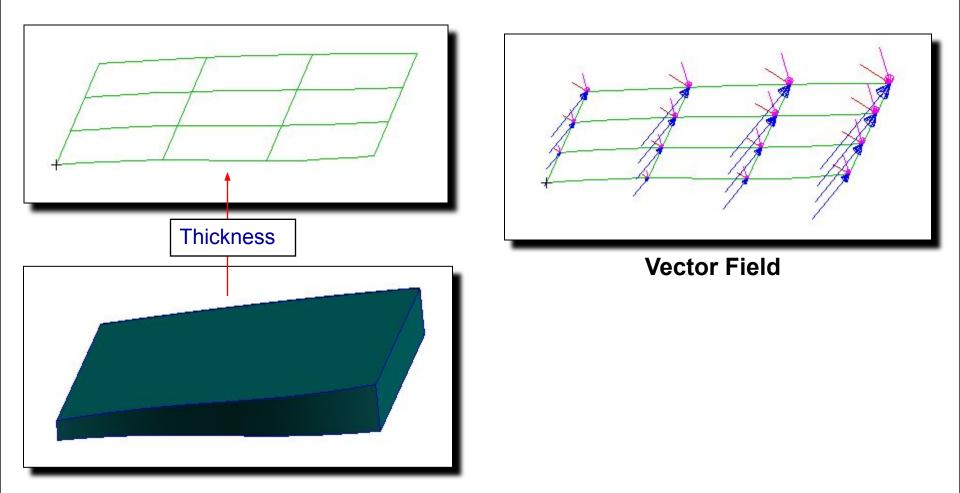

- There are three basic types of fields with several different input options. They are summarized as follows:
  - Spatial field
    - These fields describe data based on spatial variation. They can vary over real space, or parametric space for geometry. Spatial fields can be either scalar or vector.
  - Material property field
    - Defines a material property as a function of temperature, strain, strain-rate, time or frequency (the material state variable), or an appropriate combination of these variables.
  - Non-spatial field
    - Defines a scalar field for dynamic analysis applications. Function can vary with time, frequency, temperature, displacement, velocity, or a user-defined variable.



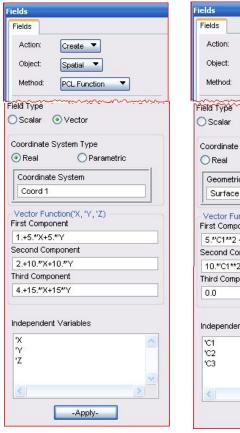

#### • Spatial fields have several parts to their definitions.

- The first part is the region the field will be applied to
  - The field can be used for the entire or part of the region of the model if the Real, or Discrete or Continuous option is selected, depending on the field type being

| Coordinate System Type<br>Real Parametric<br>Coordinate System<br>Coord 0 | OR | FEM Field Defini | tion<br>ⓒ Continuous |
|---------------------------------------------------------------------------|----|------------------|----------------------|
|                                                                           |    |                  |                      |



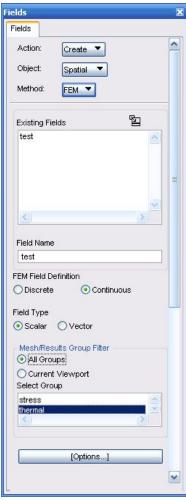

• If the field is being used for the region of a single geometric entity, e.g. surface, or part or all of the finite element entities, e.g. nodes, the Parametric or Discrete options are available.

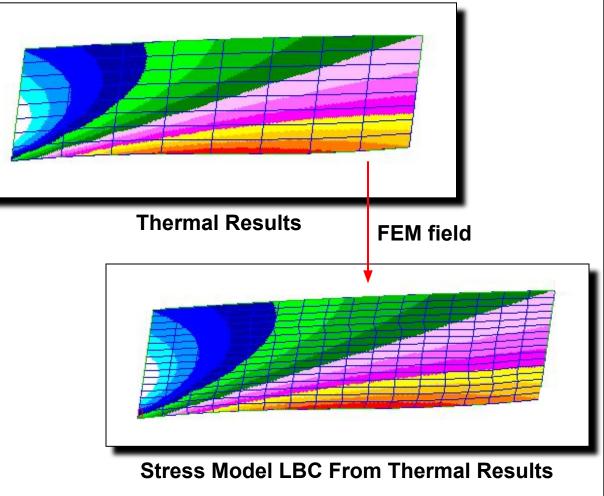



Use subset of all nodes

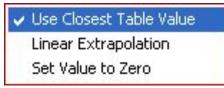
- The second part is the type of field being created, scalar or vector.




- The third part is the specification of the field data.



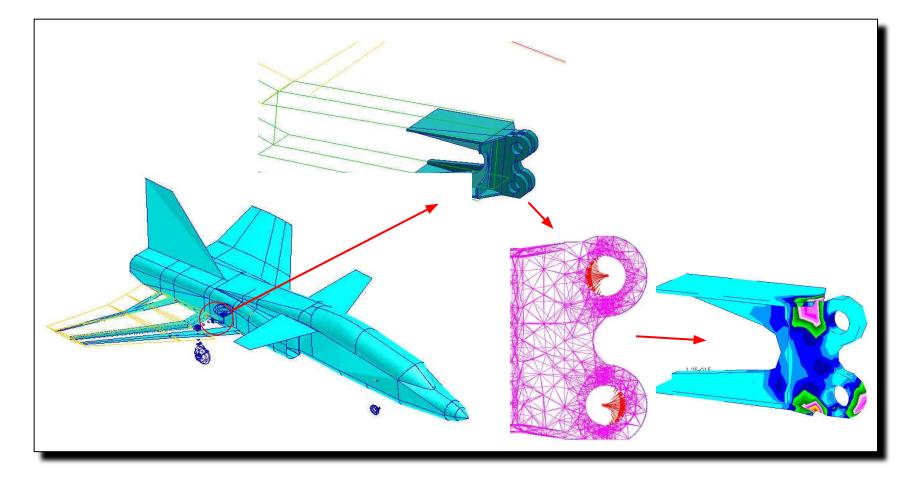

| Action: Create   Action: Create   Object: Spatial   Method: PCL Function   ield Type  Scalar   Vector  Coordinate System Type  Real   Parametric  Geometric Entity  Surface 11 | Fields     | and the second |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|
| Object: Spatial  Method: PCL Function  Ield Type Scalar  Coordinate System Type Real  Geometric Entity                                                                         | Fields     |                                                                                                                  |
| Method: PCL Function  ield Type Scalar  Vector Coordinate System Type Real Geometric Entity                                                                                    | Action:    | Create 🔻                                                                                                         |
| ield fype<br>Scalar   Vector<br>Coordinate System Type<br>Real  Geometric Entity                                                                                               | Object:    | Spatial                                                                                                          |
| O Scalar                                                                                                                                                                       | Method:    | PCL Function                                                                                                     |
| ) Scalar                                                                                                                                                                       | ield fyne  |                                                                                                                  |
| Coordinate System Type<br>Real  Parametric Geometric Entity                                                                                                                    |            | • Vector                                                                                                         |
| Real     O     Parametric     Geometric Entity                                                                                                                                 |            | 0                                                                                                                |
| Geometric Entity                                                                                                                                                               | Coordinate | System Type                                                                                                      |
|                                                                                                                                                                                | 🔿 Real     | 💿 Parametric                                                                                                     |
|                                                                                                                                                                                | Geometric  | : Entity                                                                                                         |
|                                                                                                                                                                                |            |                                                                                                                  |
| <u>I</u>                                                                                                                                                                       | ]          |                                                                                                                  |
| Vector Function('C1, 'C2, 'C3)                                                                                                                                                 |            |                                                                                                                  |
| First Component                                                                                                                                                                |            |                                                                                                                  |
| 5.*'C1**2 + 5.*'C2**2                                                                                                                                                          | L          |                                                                                                                  |
| Second Component                                                                                                                                                               |            | 2                                                                                                                |
| 10.*'C1**2 + 10.*'C2**2                                                                                                                                                        | 10.*'C1**2 | + 10.*'C2**2                                                                                                     |
| Third Component                                                                                                                                                                | Third Comp | onent                                                                                                            |
| 0.0                                                                                                                                                                            | 0.0        |                                                                                                                  |
|                                                                                                                                                                                |            |                                                                                                                  |
| ndependent Variables                                                                                                                                                           | ndepender  | nt Variables                                                                                                     |
| E se da v                                                                                                                                                                      | 'C1        |                                                                                                                  |
|                                                                                                                                                                                | 'C2        |                                                                                                                  |
| 'C2                                                                                                                                                                            | .C3        |                                                                                                                  |
|                                                                                                                                                                                |            |                                                                                                                  |
| 'C2                                                                                                                                                                            | <          | >                                                                                                                |
| 'C2                                                                                                                                                                            |            |                                                                                                                  |
| 102<br>103                                                                                                                                                                     |            | -Apply-                                                                                                          |


|                          |                 | nput Data      |                |        |
|--------------------------|-----------------|----------------|----------------|--------|
|                          |                 | [Options]      | 5              |        |
|                          | <u> </u>        |                |                |        |
| 20 Se                    | alar Table Data |                |                | -<br>C |
|                          |                 |                | ے بے           | 2 2    |
| ut Data                  | Auto Highligi   | nt             | Import/Export  | _      |
|                          |                 |                | L              | _      |
| ata                      |                 |                | 4              |        |
|                          |                 | Y-1            | Y-2            |        |
|                          |                 |                |                |        |
| X-1                      | 1.0000000E+000  | 1.5000000E+002 | 2.1500000E+002 |        |
| X-2                      | 2.0000000E+000  | 3.0000000E+002 | 3.1500000E+002 |        |
| ^-Z                      | 3.0000000E+000  | 5.7500000E+002 | 5.9000000E+002 | 1      |
| X-2                      |                 | 6.9500000E+002 | 7.1000000E+002 | 1      |
|                          | 4.0000000E+000  | 6.950000E+002  |                |        |
| X-3                      | 4.0000000E+000  | 6.9500000E+002 |                |        |
| X-3<br>X-4               | 4.000000E+000   | 6.9900000E+002 |                |        |
| X-3<br>X-4<br>X-5        | 4.000000E+000   | 6.9500000E+002 |                |        |
| X-3<br>X-4<br>X-5<br>X-6 | 4.000000E+000   | 6.9300000E+002 | *<br>*<br>*    |        |

- The third part is the specification of the field data.

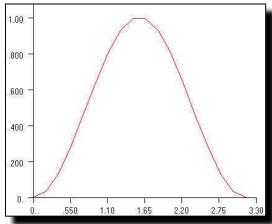





 Some field types have options that allow specification of the averaging method between or beyond data points.



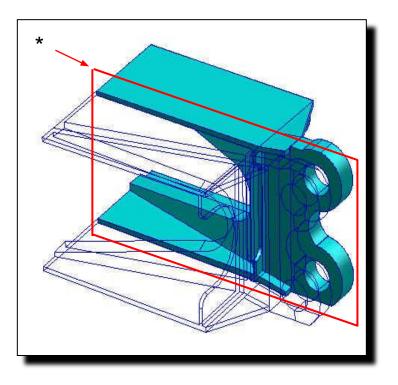
- Use Closest Table Value use table value whose independent variable value(s) is closest to that of the interpolation point
- Linear Extrapolation extrapolate beyond or interpolate between table entries
- Set Value to Zero specify data as zero beyond table entries
- In some cases, the averaging options will have no effect. Their effect is dependent on how the field is used, and sometimes, on which finite element solver is used.
- Because averaging will be done, fields need to be checked for accuracy.


### CASE STUDY 1, BOLT LOADING REPRESENTED BY COS2 FIELD

• Create a real scalar field to represent a cos2 bolt loading.



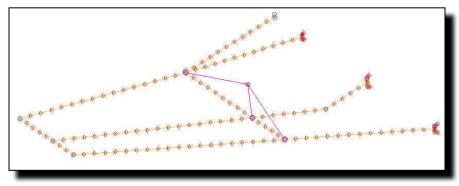
### **CASE STUDY 1, GOAL**


- The goal is to conduct a preliminary design study of a wing-to-body 3D fitting. Due to the high loads and close (very similar) dimensions, careful attention to the loading conditions must be considered even for the initial study.
- To make the loading condition more realistic, a loading distribution of cosine squared (cos2q) is used.



 To make the pressure loading application region more realistic, the direction in which the load from the pin acts will also be considered.

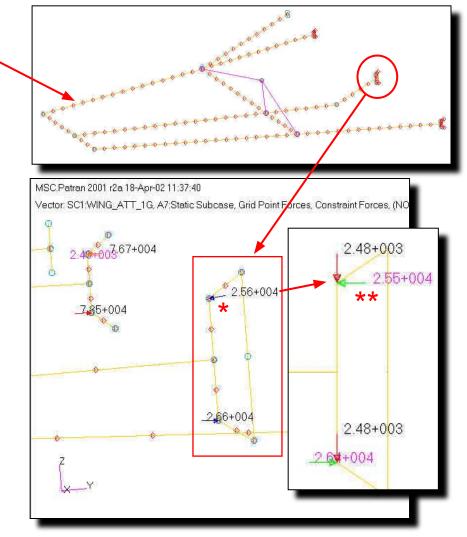
### CASE STUDY 1, APPROACH TO APPLYING LOAD


- Approach to creating the analysis model:
  - Create a 3D geometry model for the 3D fitting.
    - The model is taken to be symmetric about a vertical plane (\*), between the pin hole pairs, that divides the fitting into two pieces:



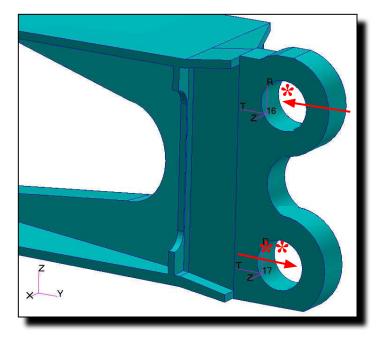
## CASE STUDY 1, APPROACH TO APPLYING LOAD

#### • Approach to creating the analysis model


 The applied loads are obtained from a free-body analysis of a beam element model of the main spars.



- The loads for the two halves of the model will be taken to be equal (loads are symmetric about the vertical plane).
- The applied concentrated forces will have to be represented by pressure.
  - Pressure will be obtained by integrating a pressure field, in the direction of loading, over an application area.
- The pressure field will be applied to solid geometry faces


### **CASE STUDY 1, CONSTRAINT (REACTION) FORCES**

- From the full aircraft model, a beam element representation of the main spares is made and analyzed.
- The free-body forces (\*) will be used to determine the pressure loading. (Both halves of the wing-to-body fitting are represented here.)
- The components of these forces (\*\*) will be used to establish the required direction of the pressure loading.



### **CASE STUDY 1, CREATE PRESSURE FROM FORCE**

- The force (both symmetric halves of the fitting are included) at the top (\*) and bottom (\*\*) bolts is 25,600 lbf and 26,600 lbf, respectively.
- To determine the constant amplitude of the cosine squared function, p0, it is necessary to integrate the pressure function over the area the pressure is to be applied to; it is the component of the applied pressure function in the direction of the applied force that is to be integrated.



### **CASE STUDY 1, CREATE PRESSURE FROM FORCE**

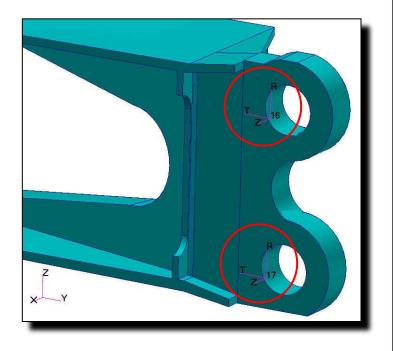
• Integrating the component of the pressure function,  $p = p_0 \cos^2(\theta + \pi/2)$ , in the direction of the applied load, the following is found:

$$f = \int_{0}^{\pi} p_0 \cos^2(\theta + \pi/2) \sin(\theta) Rt d\theta = \frac{4}{3} p_0 Rt$$

where R is the radius of the bolt hole, and t is the thickness of the clevis.

Solve for p<sub>0</sub> in terms of the applied concentrated load

$$p_0 = \frac{3f}{4Rt} = \frac{3f}{2Dt}$$


• Applying this formula to one of the applied forces, the following is found:

$$p_0 = \frac{3f}{2Dt} = \frac{3*25600}{2*1.501*(2*0.980)} = 13052.5psi$$

where D = 1.501 in and t = 0.980 in.; multiply t by 2 for symmetry.

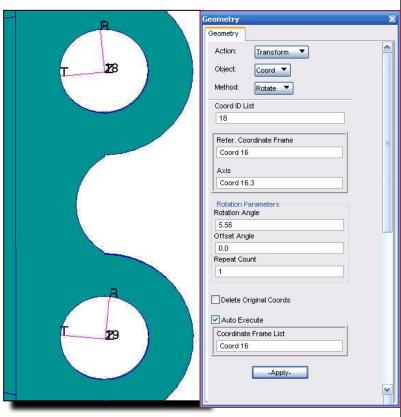
### CASE STUDY 1, ESTABLISHING THE LOAD APPLICATION AREA

- Create coordinate systems at the center of the bolt holes to do the following:
  - Specify the direction of the loading.
  - Break the geometry to create solid faces the loading will be applied to.
  - Use the coordinate systems to provide variables for the creation of the fields for the loading.
- On the symmetry model, create a cylindrical coordinate system at the center of each hole.



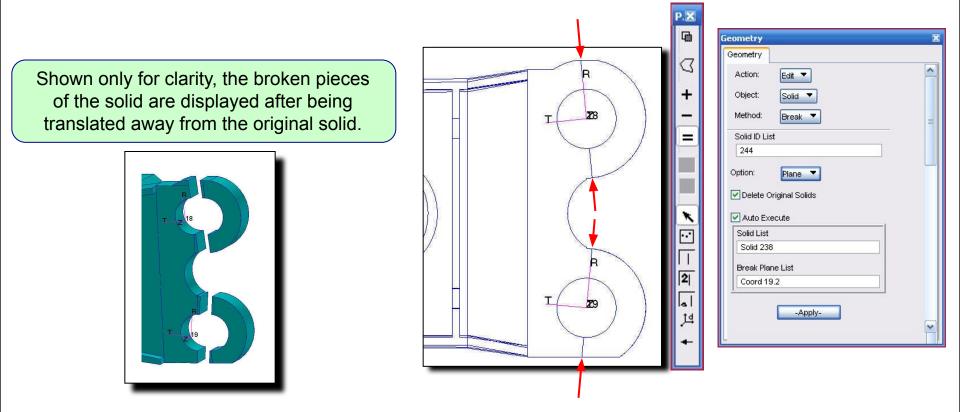
# CASE STUDY 1, ESTABLISHING THE LOAD APPLICATION AREA

• Calculate the angle to rotate the coordinate frames. This will be based on the components of the free-body force.


```
  \theta_{top} = Tan-1(-2,480 \text{ lbf} / -25,500 \text{ lbf})

= 5.56 + 180 degrees

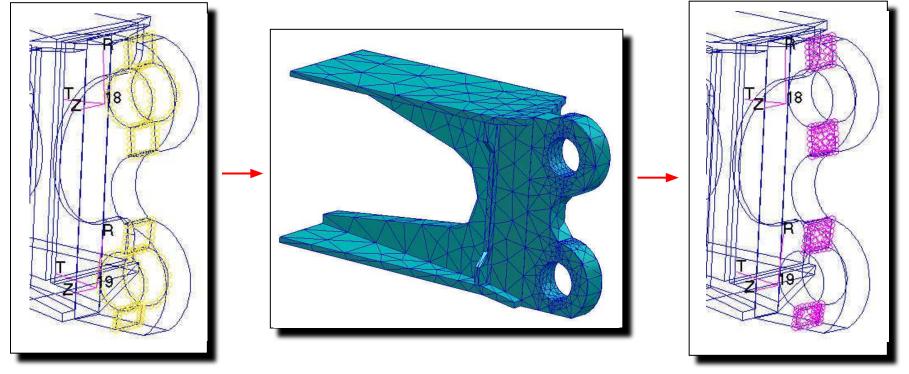
  \theta_{bottom} = Tan-1(-2,480 \text{ lbf} / 26,400 \text{ lbf}) = -5.37


degrees
```

- The previously created coordinate frame at the center of the holes is used to create the rotated frames.
  - The original coordinate frames were deleted.



## CASE STUDY 1, ESTABLISHING THE LOAD APPLICATION AREA


- Break the solid using the rotated coordinate frames. This gives the needed solid faces for applying the pressure.
  - In Geometry: Edit/Solid/Break, Option: Plane, use the second (theta) direction from the picking filter and the hole center coordinate frame to break the solid.



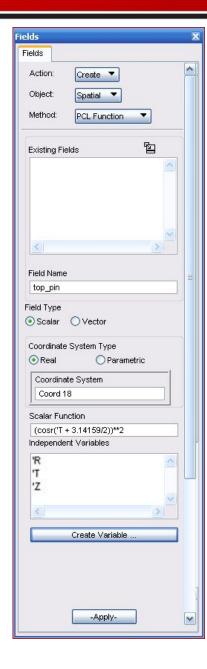
### **CASE STUDY 1, MESH THE SOLIDS**

### TetMesh the model

- Use mesh seeds for a finer mesh around the pin holes.
- Mesh the 3 solids simultaneously.
- Equivalence the model to connect the tets at the geometric interfaces.

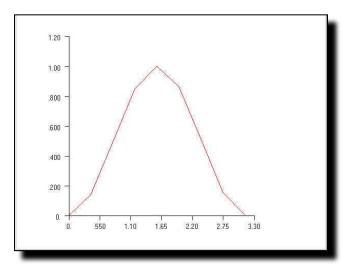


### **CASE STUDY 1, CREATE THE FIELD**


- A separate field and pressure load set needs to be created for each pin hole loading.
- Create the field for the top pin hole.
  - As the field will be used for pressure loading, Field Type must be Scalar.
  - Coordinate System Type is set as Real and Coordinate System is the cylindrical coordinate system, created by rotating about the center of the hole, Coord 18.

| Fields Action: Create Object: Spatial Method: PCL Function Existing Fields Field Name top_pin |     |
|-----------------------------------------------------------------------------------------------|-----|
| Object: Spatial Method: PCL Function Existing Fields Field Name                               |     |
| Method: PCL Function                                                                          | ^   |
| Method: PCL Function                                                                          |     |
| Existing Fields                                                                               |     |
| Field Name                                                                                    | _   |
| Field Name                                                                                    |     |
| Field Name                                                                                    | 4   |
|                                                                                               |     |
| top_pin                                                                                       |     |
|                                                                                               | _   |
| Field Type                                                                                    |     |
| Scalar ○ Vector                                                                               |     |
| Coordinate System Type                                                                        |     |
| Real     OParametric                                                                          |     |
| Coordinate System                                                                             | ľ l |
| Coord 18                                                                                      |     |
| Scalar Function                                                                               | -   |
| (cosr('T + 3.14159/2))**2                                                                     |     |
| Independent Variables                                                                         |     |
| 'R<br>'T                                                                                      |     |
| 'Z                                                                                            |     |
|                                                                                               | ~   |
| <u>×</u>                                                                                      |     |
| Create Variable                                                                               |     |
|                                                                                               |     |
| Anniv                                                                                         |     |
| -Apply-                                                                                       |     |

## CASE STUDY 1, CREATE THE FIELD


- Scalar Function in the form has 4 key components:
- (cosr('T+3.14159/2))\*\*2

| cosr      | This specifies that the argument of cosine is in radians.                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 'T        | Taken from the Independent Variables list, this is the spatial variable based on the coordinate system selected. The coordinate systems created in Patran are in radians. |
| 3.14159/2 | This value is used to rotate the field a quarter turn or 90 degrees.                                                                                                      |
| **2       | This is the exponential or squared term of cos <sup>2</sup> .                                                                                                             |

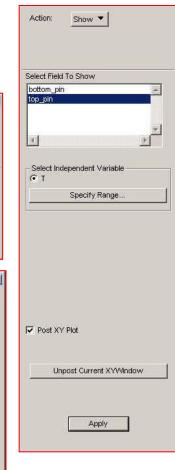


### **CASE STUDY 1, VERIFY CREATED FIELD**

- Verify the created field.
- In Fields: Show, Specify Range gives a range over which the field acts and the number of points for the display.
  - In this case, only the loaded side of the hole is specified, 0 radians to 3.142 radians with 9 divisions.



|                                                         | ОК                                                  |     |
|---------------------------------------------------------|-----------------------------------------------------|-----|
| urves                                                   |                                                     |     |
| 11.145                                                  |                                                     | -1- |
|                                                         |                                                     |     |
| т                                                       | Value                                               | 1 4 |
| 0,                                                      | 0.00011655738                                       |     |
|                                                         |                                                     |     |
| 0.39274999                                              | 0.13893066                                          |     |
|                                                         | 0.13893066                                          |     |
| 0.39274999                                              |                                                     |     |
| 0.39274999<br>0.78549999                                | 0.4893063                                           |     |
| 0.39274999<br>0.78549999<br>1.17825                     | 0.4893063                                           |     |
| 0.39274999<br>0.78549999<br>1.17825<br>1.571            | 0.4893063 0.84594756 0.99988782                     |     |
| 0.39274999<br>0.78549999<br>1.17825<br>1.571<br>1.96375 | 0.4893063<br>0.84594756<br>0.99968782<br>0.86092854 |     |


Specify Range

Independent Variable Range

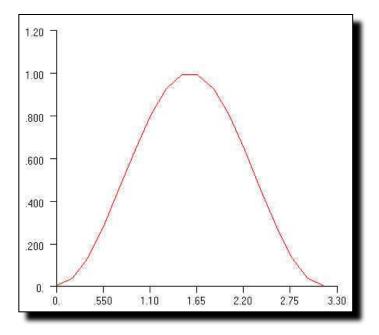
Minimum

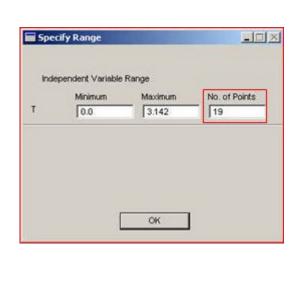
Maximum

3.142



No. of Points


9


PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 24

### **CASE STUDY 1, VERIFY CREATED FIELD**

- If the plot or table data does not look correct, increase the number of points.
  - Sometimes, confusion over degrees or radians can arise, that can be hidden by using too few points.
  - The Plot below shows a much smoother curve than before; the coarser curve could be representative of several superimposed functions.

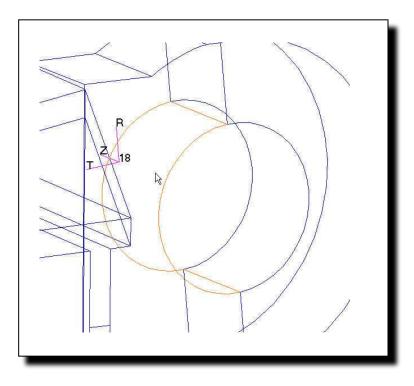




| to all an    | ter and the second s |
|--------------|-----------------------------------------------------------------------------------------------------------------|
| top_p        | n_pin 🔎                                                                                                         |
| a l          | <u>*</u>                                                                                                        |
| Seler        | t Independent Variable                                                                                          |
|              | Specify Range                                                                                                   |
|              |                                                                                                                 |
| <b>⊽</b> Po: | st XY Plot                                                                                                      |

### **CASE STUDY 1, CREATE THE PRESSURE LOAD**

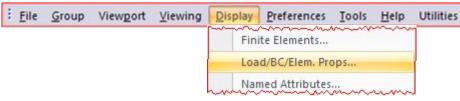
### • Create the load for the top pin.


- Target Element Type is 3D because solid finite elements are used.
- In the Input Data form, the Load/BC Set Scale Factor is set to 13,052.5 psi.
- The Pressure input is field top\_pin.

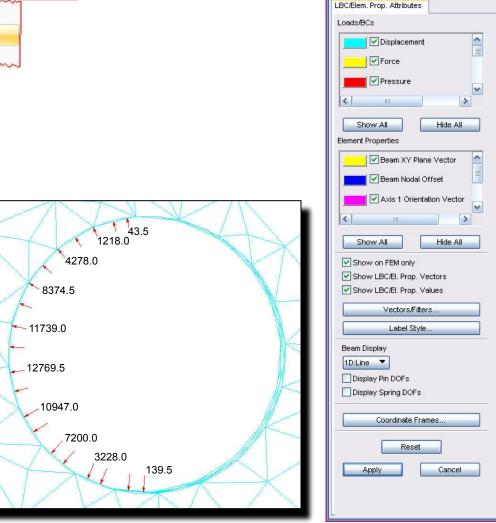
|                                                       | out Data                           |     |
|-------------------------------------------------------|------------------------------------|-----|
| 13052.5 Pressure f.top_pin  Spatial Fields bottom_pin | oad/Boundary Conditions Input Data | -   |
| Pressure f.top_pin f.top_pin                          | _oad/BC Set Scale Factor           | ^   |
| f.top_pin                                             | 13052.5                            |     |
| Spatial Fields                                        | Pressure                           | 2   |
| Spatial Fields                                        | f:top_pin                          |     |
|                                                       | patial Fields<br>bottom_pin        |     |
| FEM Dependent Data                                    | r Livi Deperident Data             | J   |
| FEM Dependent Data                                    |                                    | 1 - |

| oad/Bound             | ary Conditions          | 2 |
|-----------------------|-------------------------|---|
| Load/Bound            | ary Conditions          |   |
| Action:               | Create 🔻                | ^ |
| Object:               | Pressure 🔻              |   |
| Туре:                 | Element Uniform         |   |
|                       |                         |   |
| Current L             | oad Case:               |   |
|                       | Default                 |   |
| Type:                 | Static                  |   |
|                       |                         |   |
| Existing Se           | ets 🖻                   |   |
|                       | 1                       |   |
|                       |                         |   |
|                       |                         |   |
|                       |                         |   |
|                       | ~                       |   |
| <                     | 2                       |   |
|                       |                         |   |
| New Set N<br>Pressure |                         |   |
| Pressure              | s_tob                   |   |
|                       |                         |   |
| Target Elem           | ent Type: 3D            |   |
|                       |                         |   |
|                       | Input Data              |   |
| Sel                   | lect Application Region |   |
|                       |                         |   |
|                       | -Apply-                 |   |
|                       |                         | 3 |
|                       |                         |   |
|                       |                         | ~ |
|                       |                         | _ |

## CASE STUDY 1, CREATE THE PRESSURE LOAD


 The application region form is set to Geometry and the solid face representing the pin contact area is selected.

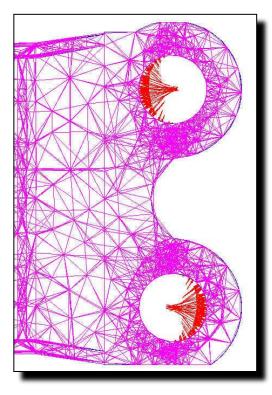


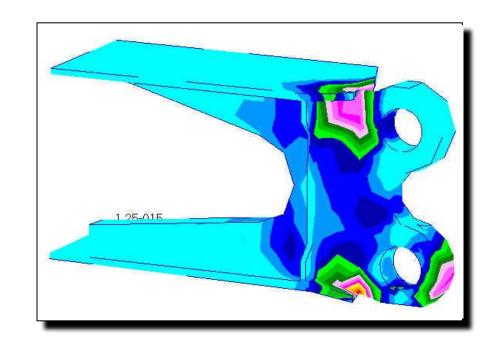

| Select Application Region                | (4)     |
|------------------------------------------|---------|
|                                          |         |
| Select: Geometry                         |         |
| Auto Select                              |         |
| Application Region<br>Select Solid Faces | -1      |
| Solid 253.67                             | - 11    |
|                                          |         |
| Add                                      |         |
|                                          |         |
| Application Region                       |         |
|                                          | <u></u> |
|                                          | ~       |
|                                          |         |
|                                          |         |
|                                          |         |
|                                          |         |
|                                          |         |
|                                          |         |
|                                          |         |
| ОК                                       |         |
| OK                                       |         |

| Load/Bounda | ary Conditions         | 2   |
|-------------|------------------------|-----|
| Load/Bounda | ary Conditions         |     |
| Action:     | Create 🔻               |     |
| Object:     | Pressure 🔻             |     |
| Туре:       | Element Uniform        |     |
| -           |                        |     |
| Current La  | oad Case:              |     |
|             | Default                |     |
| Туре:       | Static                 |     |
| -           |                        | -   |
| (           | ts 🗳                   | -   |
| Existing Se | ts 🖻                   |     |
|             |                        | III |
|             |                        |     |
|             |                        |     |
|             |                        |     |
| <           | ×                      |     |
|             |                        | 1   |
| New Set N   | ame                    |     |
| Pressure    | _top                   |     |
|             |                        | 1   |
| Target Elem | ent Type: 3D 💌         |     |
|             |                        |     |
|             | Input Data             | 1   |
|             | Input Data             | J   |
| Sele        | ect Application Region | J   |
|             | -Apply-                |     |
|             |                        |     |
|             |                        |     |
|             |                        | ~   |
|             |                        | _   |

### CASE STUDY 1, DISPLAYING THE PRESSURE LOAD

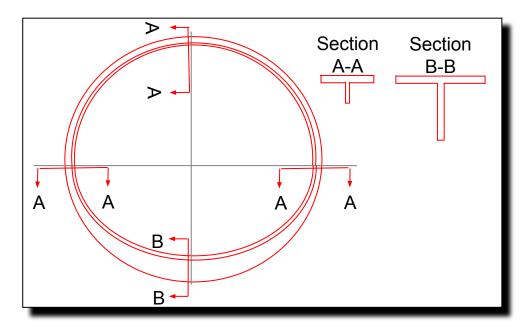



- Display / Load/BC/Elem.
   Props... is used to view the pressures on the finite elements.
  - For clarity, only some of the elements and their pressures are shown.
- Notice that the pressures correctly approach zero at the ends, and are close to the value of 13,052.5 psi near the center.



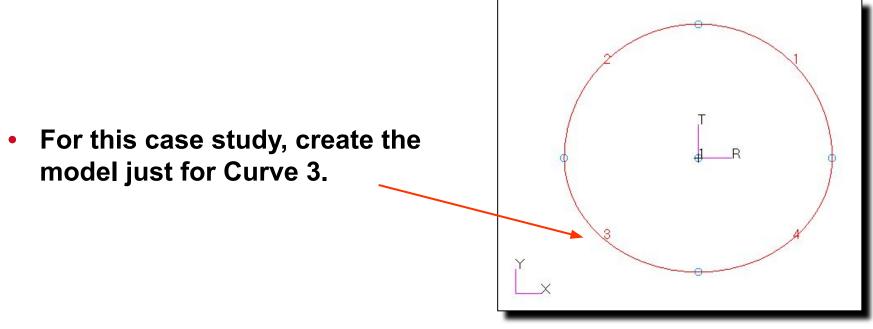

BC/Elem, Prop. Attributes

### **CASE STUDY 1: RUNNING THE ANALYSIS**


- The image of the finite element model (to the left) displays the pressure markers at the two holes.
- The fringe plot to the right shows stress tensor results:






## CASE STUDY 2, SPATIAL/PCL FUCNTION FIELDS, PARAMETRIC

- Model a submarine stiffening ring that has varying cross-sectional dimensions, using beam elements.
- The top of the ring has a constant cross-section (A-A), and the bottom cross-section varies from A-A to B-B to A-A.
- Use Fields: Create / Spatial / PCL Function



### **CASE STUDY 2, CREATE GEOMETRY**

- First, create geometric curves that represent the ring. When meshed with beam elements, they have either constant or varying cross-sectional properties.
- The top curves (Curve 1, 2) are for elements with constant cross-sectional properties, and the bottom curves are for varying properties.



### CASE STUDY 2, CREATE THE FIELD

- It is necessary to create two spatially varying fields, one for the height of the cross-section, and the other for the width of the cross-section.
- Use Parametric for Coordinate System Type.

| lds                                                                                                               | Fields                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ields                                                                                                             | Fields                                                                                                            |
| Action: Create                                                                                                    | Action: Create 🔻                                                                                                  |
| Object: Spatial                                                                                                   | Object: Spatial 🔻                                                                                                 |
|                                                                                                                   |                                                                                                                   |
| Method: PCL Function                                                                                              | Method: PCL Function                                                                                              |
| Existing Fields                                                                                                   | Existing Fields                                                                                                   |
|                                                                                                                   | height_taper                                                                                                      |
| <u>×</u>                                                                                                          |                                                                                                                   |
| Field Name                                                                                                        | Field Name                                                                                                        |
| height_taper                                                                                                      | width_taper                                                                                                       |
| ield Type                                                                                                         | Field Type                                                                                                        |
| ● Scalar OVector                                                                                                  | ⊙ Scalar O Vector                                                                                                 |
| Coordinate System Type                                                                                            | Coordinate System Type                                                                                            |
| 🔿 Real 💿 Parametric                                                                                               | 🔿 Real 💿 Parametric                                                                                               |
| rarameuric                                                                                                        |                                                                                                                   |
| Geometric Entity                                                                                                  | Geometric Entity                                                                                                  |
| 1                                                                                                                 |                                                                                                                   |
| Geometric Entity                                                                                                  | Geometric Entity                                                                                                  |
| Geometric Entity<br>Curve 3                                                                                       | Geometric Entity<br>Curve 3                                                                                       |
| Geometric Entity<br>Curve 3<br>Scalar Function<br>15.0 + 15.0 * 'C1                                               | Geometric Entity<br>Curve 3<br>Scalar Function                                                                    |
| Geometric Entity<br>Curve 3<br>Scalar Function<br>15.0 + 15.0 * 'C1                                               | Geometric Entity<br>Curve 3<br>Scalar Function<br>12.0 + 12.0 * 'C1                                               |
| Geometric Entity<br>Curve 3<br>Scalar Function<br>15.0 + 15.0 * 'C1<br>Independent Variables<br>'C1<br>'C2        | Geometric Entity<br>Curve 3<br>Scalar Function<br>12.0 + 12.0 * 'C1<br>Independent Variables<br>'C1<br>'C2        |
| Geometric Entity<br>Curve 3<br>Scalar Function<br>15.0 + 15.0 * 'C1<br>Independent Variables<br>'C1               | Geometric Entity<br>Curve 3<br>Scalar Function<br>12.0 + 12.0 * 'C1<br>Independent Variables<br>'C1               |
| Geometric Entity<br>Curve 3<br>Scalar Function<br>15.0 + 15.0 * 'C1<br>Independent Variables<br>'C1<br>'C2<br>'C3 | Geometric Entity<br>Curve 3<br>Scalar Function<br>12.0 + 12.0 * 'C1<br>Independent Variables<br>'C1<br>'C2<br>'C3 |
| Geometric Entity<br>Curve 3<br>Scalar Function<br>15.0 + 15.0 * 'C1<br>Independent Variables<br>'C1<br>'C2<br>'C3 | Geometric Entity<br>Curve 3<br>Scalar Function<br>12.0 + 12.0 * 'C1<br>Independent Variables<br>'C1<br>'C2        |

### **CASE STUDY 2, CREATE PROPERTIES USING THE FIELDS**

- In Properties, the dimensions of the "I" beam are specified using Beam Library.
- The appropriate fields (e.g. height\_taper) are used from the Spatial Scalar Fields menu.

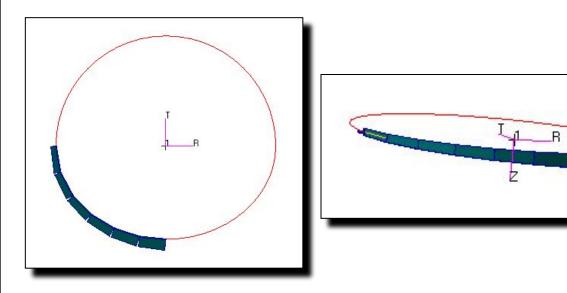
| Input Properties                |                                      |               |          | Beam Library                                     |              |
|---------------------------------|--------------------------------------|---------------|----------|--------------------------------------------------|--------------|
| Standard Straight Beam          |                                      |               |          | Action: Create                                   |              |
| Property Name                   | Value                                | Value Type    |          | Object: Standard Shape  Method: NASTRAN Standard |              |
| Section Name                    | nā:                                  | Properties    | IÎ       | Existing Sections                                |              |
| Material Name                   | m:HY-80                              | Mat Prop Name | ***      | Filter                                           | н            |
| XZ Plane Definition             | <-1 0 0 Coord 1>                     | Vector        |          | ×                                                | vV1<br>vV2   |
| Cross-Sectional Area            |                                      | Real Scalar   |          | New Section Name                                 | t<br>H       |
| Shear Area-x]                   |                                      | Real Scalar   |          | Lower_lbeam                                      | 12           |
| Shear Area-y]                   |                                      | Real Scalar   |          |                                                  | Spatial Scal |
| lxx                             |                                      | Real Scalar   |          |                                                  | width_tape   |
| lyy                             |                                      | Real Scalar   |          |                                                  |              |
| <                               | Create Sectio                        |               |          |                                                  | <            |
|                                 |                                      |               |          | < >                                              |              |
|                                 | Beam Librar                          | v             |          | Calculate/Display                                |              |
| Enter the wester defining the 1 | (Z plane or select a spatial field v |               | ~        |                                                  |              |
| Litter the vector denning the / | vz plane or select a spatial field # | an meicon.    | -        |                                                  |              |
|                                 |                                      |               | <u>~</u> |                                                  |              |
| ок                              | Clear                                |               |          |                                                  |              |

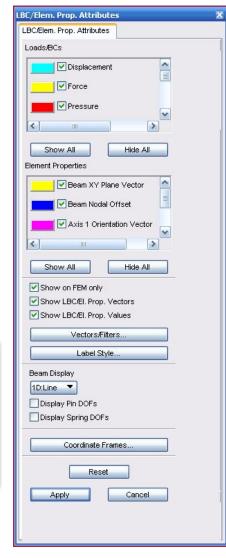
| Element Properties                           |  |  |  |  |  |
|----------------------------------------------|--|--|--|--|--|
| Element Properties                           |  |  |  |  |  |
| Action: Create                               |  |  |  |  |  |
| Object: 1D 🔻                                 |  |  |  |  |  |
| Type: General Beam                           |  |  |  |  |  |
|                                              |  |  |  |  |  |
| Sets By: Name 🔻 🖺                            |  |  |  |  |  |
| Sets By: Name                                |  |  |  |  |  |
|                                              |  |  |  |  |  |
| ~                                            |  |  |  |  |  |
| <u>&lt;</u>                                  |  |  |  |  |  |
| Filter *                                     |  |  |  |  |  |
| Property Set Name                            |  |  |  |  |  |
| Beam_bottom                                  |  |  |  |  |  |
| ( <u> </u>                                   |  |  |  |  |  |
| Options:<br>Straight                         |  |  |  |  |  |
|                                              |  |  |  |  |  |
| Standard                                     |  |  |  |  |  |
| Input Properties                             |  |  |  |  |  |
|                                              |  |  |  |  |  |
| Select Application Region                    |  |  |  |  |  |
|                                              |  |  |  |  |  |
| Apply                                        |  |  |  |  |  |
| Select Application Region                    |  |  |  |  |  |
| Element Properties Select Application Region |  |  |  |  |  |
| Select: Entities                             |  |  |  |  |  |
|                                              |  |  |  |  |  |
| Application Region<br>Select Members         |  |  |  |  |  |
| Curve 3                                      |  |  |  |  |  |
|                                              |  |  |  |  |  |
| Add Remove                                   |  |  |  |  |  |
| Application Region                           |  |  |  |  |  |
|                                              |  |  |  |  |  |
|                                              |  |  |  |  |  |

f:width\_taper f:height\_taper 2.5 1.5

Write to Report File

Reset


Cancel


PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

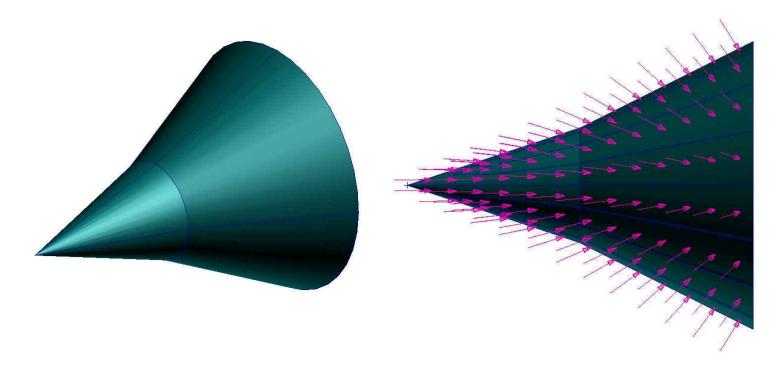
### CASE STUDY 2, VERIFY THE BEAM CROSS-SECTION PROPERTIES



 Use Display: Load/BC/Elem. Props, Beam Display to view the finished beam cross-sections in the viewport.

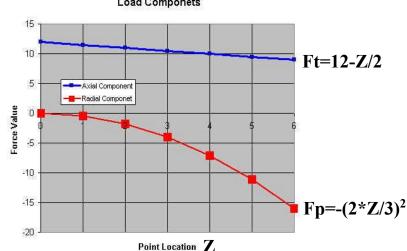





## FIELDS SPATIAL/PCL FUNCTION, VECTOR

- Spatial/PCL Function, Vector is similar to Scalar except that individual direction components can be specified:
  - Using Real for Coordinate System Type will make the independent variables relative to the coordinate system chosen.
  - Using Parametric for Coordinate System
     Type will make the independent
     variables relative to the geometric entity
     parametric coordinate system.

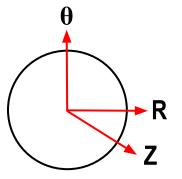
| Fields 🛛 🗶                                     | Fields 🛛 🗶                                        |
|------------------------------------------------|---------------------------------------------------|
| Fields                                         | Fields                                            |
| Action: Create                                 | Action: Create                                    |
| Object: Spatial                                | Object: Spatial 🔻                                 |
| Method: PCL Function                           | Method: PCL Function                              |
|                                                |                                                   |
| Existing Fields                                | Existing Fields                                   |
|                                                |                                                   |
|                                                |                                                   |
|                                                |                                                   |
|                                                |                                                   |
|                                                | < >                                               |
| Field Name                                     | Field Name                                        |
|                                                |                                                   |
| Field Type                                     | Field Type                                        |
| ⊖ Scalar ⊙Vector                               | ⊖ Scalar                                          |
| Coordinate System Type                         | Coordinate System Type                            |
| Real     O     Parametric                      | Real  O Real                                      |
| Coordinate System                              | Geometric Entity                                  |
| Coord 0                                        |                                                   |
| Vector Function('X, 'Y, 'Z)<br>First Component | Vector Function('C1, 'C2, 'C3)<br>First Component |
|                                                |                                                   |
| Second Component                               | Second Component                                  |
| Third Component                                | Third Component                                   |
|                                                |                                                   |
| la dance dast Variables                        |                                                   |
| Independent Variables                          | Independent Variables                             |
| Ŷ<br>Z                                         | 'C2                                               |
| 4                                              | 103                                               |
|                                                |                                                   |
| -Apply-                                        | -Apply-                                           |
|                                                |                                                   |
|                                                |                                                   |


#### **CASE STUDY 3, VARYING TRACTION LOAD ON A SPIKE**

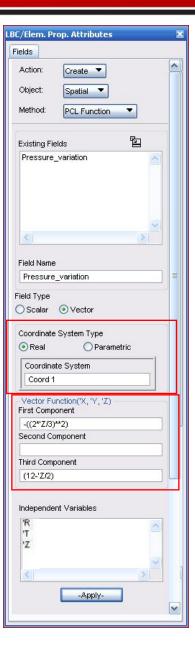
 Use Spatial/PCL Function to make a vector field, representing a varying traction load and radial-pressure load on a spike.



#### CASE STUDY 3, VARYING LOAD


- The traction load from tip to base varies linearly from 12 to 9 over the 6 unit length of the spike.
- The radial-pressure load starts at 0 and decreases exponentially to -16 at the base.



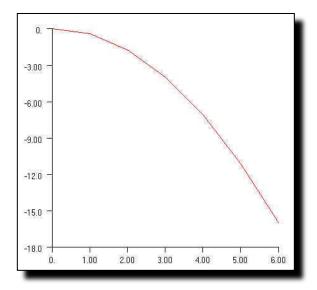

- The chart and equations describe the individual components for the vectors.
  - Fp is the radial-pressure and Ft is the traction load.

#### CASE STUDY 3, CREATE THE FIELD

- Spatial/PCL Function, Vector references the cylindrical coordinate system at the tip of the spike, Coord 1.
  - With reference to a cylindrical coordinate system, the first component will be applied only in the radial direction, R, and the third component will be applied only in the axial direction, Z.



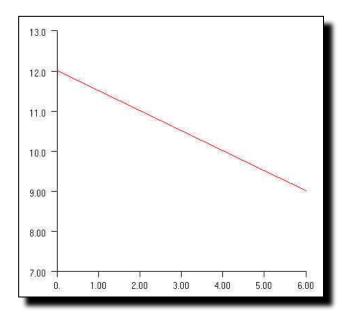
• In both equations, the distance along the spike from the tip, Z, is the independent variable.




- Use Fields/Show to check the equation.
  - In the Select Independent Variable, only the Z variable is shown, as it is the only variable used in the equations.
  - Specify the range of the equations as the model length. The range is from 0 to 6 units with 7 divisions.

| Inde | ependent Variable | Range   |               |  |
|------|-------------------|---------|---------------|--|
|      | Minimum           | Maximum | No. of Points |  |
| Z    | 0.0               | 6.0     | 7             |  |
|      |                   |         |               |  |
|      |                   |         |               |  |

| Action:                      | Show 🔻                                       |          |
|------------------------------|----------------------------------------------|----------|
|                              |                                              |          |
|                              |                                              |          |
|                              |                                              |          |
| Select Fie                   | eld To Show                                  |          |
| Pressur                      | e_variation                                  |          |
|                              |                                              |          |
|                              |                                              |          |
|                              |                                              |          |
|                              |                                              | <u>~</u> |
| 3                            |                                              | 2        |
|                              |                                              |          |
|                              | ndependent Vari                              | able     |
| ⊙z                           |                                              |          |
|                              | Specify Ran                                  | ge       |
|                              |                                              |          |
| Coloris                      |                                              |          |
|                              | Vector Componer                              | π        |
| and the second second second | 2 🔾 3                                        |          |
| and the second second second | 2 🔾 3                                        |          |
| and the second second second | )2 ()3                                       |          |
| and the second second second | )2 ()3                                       |          |
| and the second second second | )2 ()3                                       |          |
| and the second second second |                                              |          |
| ©1 C                         |                                              |          |
| ⊙1 C                         | (Y Plot                                      | YWindow  |
| ⊙1 C                         |                                              | YWindow  |
| ⊙1 C                         | (Y Plot                                      |          |
| ⊙1 C                         | (Y Plot<br>Jnpost Current X<br>Delete All Cu |          |
| ⊙1 C<br>✓Post                | (Y Plot<br>Jnpost Current X                  |          |
| ⊙1 C                         | (Y Plot<br>Jnpost Current X<br>Delete All Cu |          |
| ⊙1 C<br>✓Post                | (Y Plot<br>Jnpost Current X<br>Delete All Cu |          |
| ⊙1 C<br>✓Post                | (Y Plot<br>Jnpost Current X<br>Delete All Cu |          |


- Only one component of the vector function can be plotted and tabulated at a time.
- The first direction, radial, component is shown.
  - Note the negative values and exponential trend.



| Z  | Value      |   |
|----|------------|---|
| 0. | 0.         | 1 |
| 1. | -0.4444448 |   |
| 2. | -1.777779  |   |
| 3. | -4.        |   |
| 4. | -7.1111116 |   |
| 5. | -11.111111 |   |
| 6. | -16.       |   |

| Actio  | n: Show 🔻                                    |
|--------|----------------------------------------------|
|        |                                              |
|        |                                              |
|        |                                              |
| Select | Field To Show                                |
| Press  | ure_variation                                |
|        |                                              |
|        |                                              |
|        |                                              |
| 1      | ×                                            |
| <      | 2                                            |
|        |                                              |
| Selec  | t Independent Variable                       |
| C 2    | Specify Range                                |
|        | Specify Range                                |
|        |                                              |
| Seler  | ct Vector Component                          |
|        | ○2 ○3                                        |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
| -      |                                              |
| ✓ Pos  | t XY Plot                                    |
| ✓ Pos  | t XY Plot                                    |
| Pos    | t XY Plot<br>Unpost Current XYWindow         |
| Pos    | Unpost Current XYWindow                      |
| Pos    |                                              |
| Pos    | Unpost Current XYWindow                      |
| Pos    | Unpost Current XYWIndow<br>Delete All Curves |
| ▼ Pos  | Unpost Current XYWIndow<br>Delete All Curves |
| Pos    | Unpost Current XYWIndow<br>Delete All Curves |
| Pos    | Unpost Current XYWIndow<br>Delete All Curves |

- The third direction, axial, component is now plotted.
  - Note the positive values and negative linear trend.

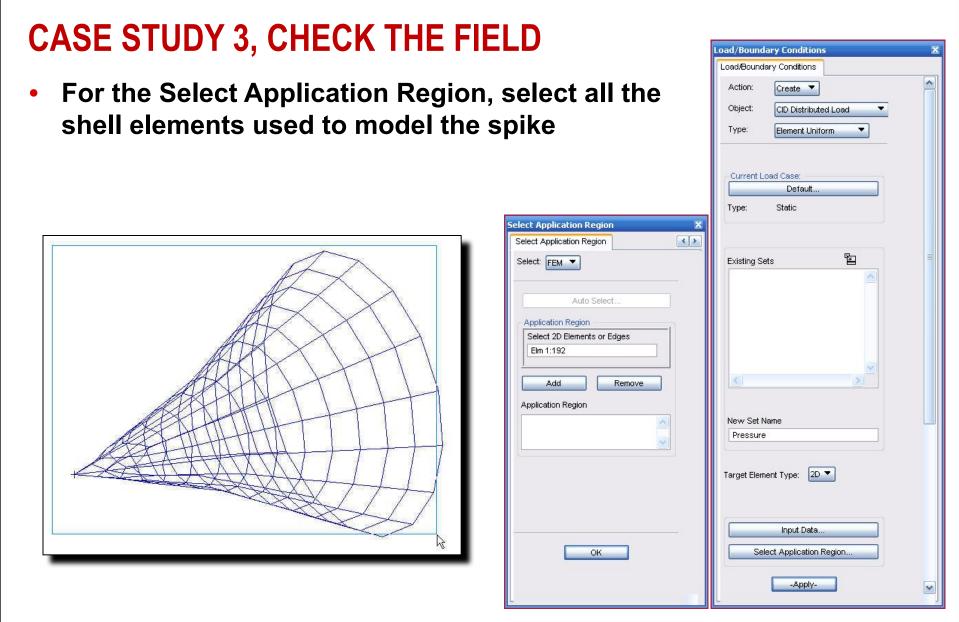


| Z  | Value |
|----|-------|
| 0. | 12.   |
| 1. | 11.5  |
| 2. | 11.   |
| 3, | 10.5  |
| 4. | 10.   |
| 5. | 9.5   |
| 6. | 9.    |

| Fields                                  |   |
|-----------------------------------------|---|
| Action: Show                            |   |
|                                         |   |
|                                         | _ |
| Select Field To Show Pressure_variation |   |
|                                         |   |
|                                         |   |
| ~                                       |   |
| <u>&lt;</u>                             |   |
| Colored Inclusion direct Manipula       |   |
| Select Independent Variable             |   |
| Specify Range                           |   |
|                                         | - |
| Select Vector Component                 | 1 |
| ○1 ○2 ⊙8                                |   |
|                                         |   |
|                                         |   |
| Post XY Plot                            |   |
|                                         |   |
| Unpost Current XYWindow                 |   |
| Delete All Curves                       |   |
|                                         | , |
| Apply                                   |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |

- To load the spike, use CID Distributed I
  - The load is applied to shell elements so the \_ Element Type is 2D.
- From the Input Data form, select the spatial field previously created.
  - No scale factor is needed, so the Load/BC Set Scale Factor is left as the default value 1.
- For the analysis coordinate frame, select the cylindrical coordinate system at the tip of the model.

| J                                                                                                              | Load/Boundary Conditions                                           |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                | Load/Boundary Conditions                                           |
| d Load.<br>the Target                                                                                          | Action: Create  Object: CID Distributed Load Type: Element Uniform |
| _                                                                                                              | Type: Element Uniform  Current Load Case: Default Type: Static     |
| ut Data 🛛 🗶                                                                                                    |                                                                    |
| ad/Boundary Conditions Input Data Dad/BC Set Scale Factor 1.                                                   | Existing Sets                                                      |
| Surf Distr Force <f1 f2="" f3="">       f:Pressure_variation       Edge Distr Force <f1 f2="" f3=""></f1></f1> | × ×                                                                |
| < >                                                                                                            | New Set Name                                                       |
| Pressure_variation                                                                                             | Pressure                                                           |
|                                                                                                                | Target Element Type: 2D 💌                                          |
| FEM Dependent Data                                                                                             |                                                                    |
| Analysis Coordinate Frame<br>Coord 1                                                                           | Input Data Select Application Region                               |
| OK Reset                                                                                                       | -Apply-                                                            |


Input Dal

Load/Bou

Load/BC 1.

<

Spatial F Pressu



• Display of the varying load on the elements:



### FIELDS, SPATIAL/TABULAR INPUT, REAL

- Spatial/Tabular Input, Real
  - Real for Coordinate System Type uses the specified coordinate system.
  - The Independent Variables chosen will affect the layout of table input form.
  - If all 3 directions are chosen, the Z direction will be specified using table layers.
  - Import/Export

| ata |         | 6.2 |  |
|-----|---------|-----|--|
|     | <br>Y-1 | Y-2 |  |
| X A | <br>    |     |  |
| X-1 | <br>    |     |  |
| X-2 | <br>    |     |  |
| X-3 | <br>    |     |  |
| X-4 | <br>    |     |  |
| X-5 | <br>    |     |  |
| X-6 | <br>    |     |  |
|     |         |     |  |

| lds                                                    |                                                                |          |   |
|--------------------------------------------------------|----------------------------------------------------------------|----------|---|
| ields                                                  |                                                                |          | - |
| Action:                                                | Create 🔻                                                       |          | 1 |
| Object:                                                | Spatial 🔻                                                      |          |   |
| Method:                                                | Tabular Input                                                  | -        |   |
| Existing F                                             | fields                                                         | ł        |   |
| height_ta<br>width_ta                                  | aper<br>aper                                                   |          |   |
| <                                                      |                                                                | 2        |   |
| Field Nam                                              | ie                                                             |          |   |
|                                                        |                                                                |          |   |
|                                                        | te System Type                                                 |          |   |
| 💿 Real                                                 | Parar<br>Parar                                                 | netric   |   |
| 💿 Real                                                 | O Paran<br>nate System                                         |          |   |
| Real     Coordin     Coord     Table De                | Paran<br>Paran<br>0                                            |          |   |
| Real     Coordin     Coord     Table De     Active Inc | O Paran<br>nate System<br>0<br>efinition<br>dependent Variable | es<br>▼Z |   |
| Real     Coordin     Coord     Table De     Active Inc | Parar<br>Parar<br>0<br>finition<br>dependent Variable<br>V     | es<br>▼Z |   |

#### FIELDS, SPATIAL/TABULAR INPUT, PARAMETRIC

- Spatial/Tabular Input, Parametric, Endpoints Only: no
  - The Parametric selection will make the tabular data relative to the chosen Geometric Entity parametric coordinate system.
  - Input Data will be controlled in the same fashion as the Coordinate System Type set to Real.
  - Import/Export

| nput Data 🗌 Auto | Highlight  | Import/Export | Field Name                   |
|------------------|------------|---------------|------------------------------|
| Data             | C2-1       | C2-2          |                              |
|                  |            |               | Coordinate System Type       |
|                  |            |               | 🛛 📄 🔿 Real 💿 Parametric      |
| C1-2             |            |               | Geometric Entity             |
| C1-3             |            |               | Solid 1                      |
| C1-4             |            |               |                              |
| C1-5             |            |               | Table Definition             |
| C1-6             |            |               | Active Independent Variables |
| C1 7             |            |               |                              |
|                  |            |               | Input Data                   |
|                  | ayer: 1 C3 |               | [Options]                    |
|                  |            |               | Endpoints Only               |

Fields Fields

Action:

Object:

Method

Existing Fields height\_taper width\_taper

Create 🔻

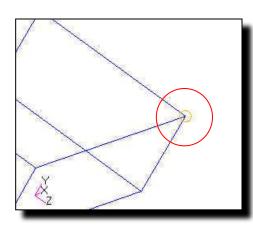
Spatial 🔻

Tabular Input

•

阳

~


### FIELDS, SPATIAL/TABULAR INPUT, PARAMETRIC

- Spatial/Tabular Input, Parametric, Endpoints Only: yes
  - Enabling Endpoints Only (yes) limits the input data to only the corners of the Geometric Entity selected.
  - Linear interpolation across the parametric space will occur between the corners.

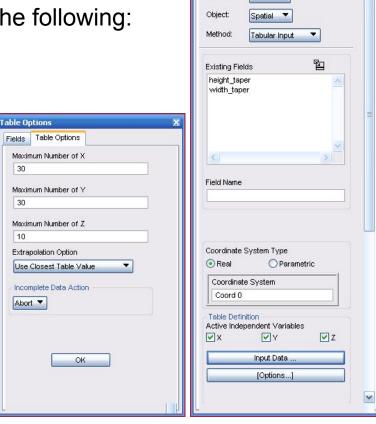
| lds                                                |                                                                                          |        | X |
|----------------------------------------------------|------------------------------------------------------------------------------------------|--------|---|
| ields                                              |                                                                                          |        |   |
| Action:                                            | Create 🔻                                                                                 |        |   |
| Object:                                            | Spatial 🔻                                                                                |        |   |
| Method:                                            | Tabular Input                                                                            | -      |   |
| Existing Fie                                       | lds                                                                                      | ٦      |   |
| 22                                                 |                                                                                          | ~      |   |
|                                                    |                                                                                          |        | Ш |
| <                                                  |                                                                                          | ~      |   |
|                                                    |                                                                                          |        |   |
| Field Name                                         |                                                                                          |        |   |
| -                                                  |                                                                                          |        |   |
|                                                    |                                                                                          |        |   |
|                                                    |                                                                                          |        |   |
| Coordinate                                         | System Type                                                                              |        |   |
| Coordinate<br>O Real                               | System Type<br>⊙ Para                                                                    | metric |   |
|                                                    | 💿 Para                                                                                   | metric |   |
| OReal                                              | 💿 Para                                                                                   | metric |   |
| Ceometrie<br>Solid 1<br>Table Defin<br>Active Inde | Para     c Entity  nition pendent Variab                                                 |        |   |
| Real<br>Geometric<br>Solid 1                       | Para     c Entity  nition pendent Variab 2D     O 3D                                     | les    |   |
| Ceometrie<br>Solid 1<br>Table Defin<br>Active Inde | Para     c Entity  nition pendent Variab 2D     O 3D  Input Data                         | les    |   |
| Ceometrie<br>Solid 1<br>Table Defin<br>Active Inde | Para     C Entity      inition     ipendent Variab 2D     O 3D      Input Data [Options] | les    |   |

#### FIELDS, SPATIAL/TABULAR INPUT, PARAMETRIC

- Spatial/Tabular Input, Parametric, Endpoints Only: yes
- The selected Active Independent Variables will determine what data can be input.
  - The Input Data form will reflect the variables selected.
  - Input Data allows the input of data at the specified corners of the Geometric Entity selected.



| Endpoint Values<br>(C1,C2,C3) Value |  |
|-------------------------------------|--|
| (a. a. a.)                          |  |
| (0,0,0)                             |  |
| (0,0,1)                             |  |
| (0,1,0)                             |  |
| (0,1,1)                             |  |
| (1,0,0)                             |  |
| (1,0,1)                             |  |
| (1,1,0)                             |  |
| (1,1,1)                             |  |


| lds                           |                                             |          |   |
|-------------------------------|---------------------------------------------|----------|---|
| ields                         |                                             |          |   |
| Action:<br>Object:<br>Method: | Create                                      | •        |   |
| Existing Fi                   | elds                                        | <u>ک</u> | 1 |
| <                             |                                             | ~        |   |
|                               | e System Type                               | ]        |   |
| OReal                         | 📀 Parame                                    | etric    |   |
| Geometr<br>Solid 1            | ric Entity                                  |          |   |
|                               | finition<br>ependent Variable:<br>) 2D ⓒ 3D | 5        |   |
| 010 0                         | laured Data                                 |          |   |
|                               | Input Data                                  |          |   |
|                               | [Options]                                   |          |   |
|                               | [Options]                                   |          | F |

# FIELDS, SPATIAL/TABULAR INPUT, OPTIONS

#### Spatial/Tabular Input, [Options]

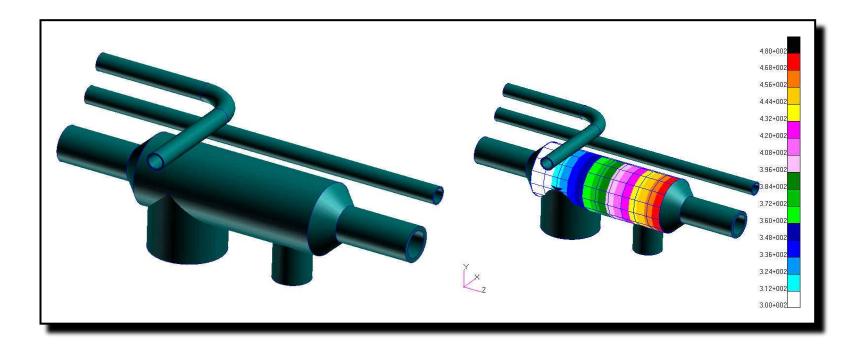
- The top portion of the Tabular Input, [Options] controls how many data points for each direction will be available in the tabular input.
- Extrapolation Option allows the selection of the following:
  - Use Closest Table Value
  - Linear Extrapolation
  - Set Value to Zero
- Incomplete Data Action allows the selection not having adequate data will be dealt

| xtrapolation Option       |   | <ul> <li>Incomplete Data Action</li> </ul> |
|---------------------------|---|--------------------------------------------|
| 🗸 Use Closest Table Value | - | 🗸 Abort                                    |
| Linear Extrapolation      |   | Set to Zero                                |
| Set Value to Zero         |   | Set to User Specified Value                |



Fields Fields

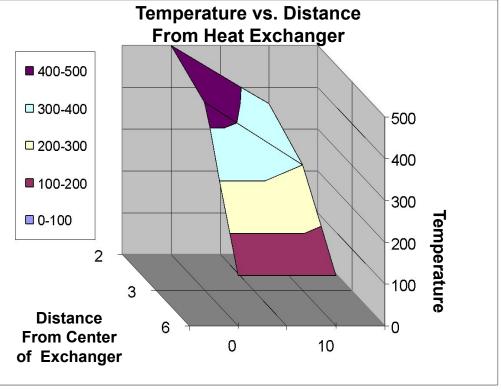
Action:


Create 🔻

#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 52

#### **CASE STUDY 4, RADIATION TO TUBES**

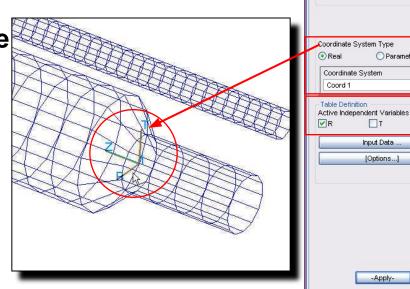

 A high temperature heat exchanger is radiating to thin tubes that are close to it. From the given data, make a Tabular Field for estimating the temperature distribution of the tubes.



### **CASE STUDY 4, TEMPERATURE VERSUS DISTANCE**

- The effect of the heat exchanger's radiation is approximated by the temperature distribution graph and table below.
  - Create a Tabular Field from the data using linear interpolation between data points.

| Distance(radial) from center of |        | ce along<br>changer |
|---------------------------------|--------|---------------------|
| exchanger                       | 0      | 10                  |
| 2                               | 500 °F | 360 °F              |
| 3                               | 450 °F | 300 °F              |
| 6                               | 120 °F | 120 °F              |




#### **Distance Along Exchanger**

### CASE STUDY 4, FIELD: SPATIAL/TABULAR INPUT

- **Use Real for the Spatial/Tabular Input Coordinate** System Type, and reference the cylindrical coordinate system at the base of the heat exchanger.
  - By choosing a cylindrical coordinate system, the Active Independent Variables change from X Y Z to R T Z.

From the given data, temperature variations will only vary as a function of radius and distance along the exchanger. For this reason, only R and Z are picked for the Active Independent Variables.



Fields

Fields Action:

Object

Method

Existing Fields Temp\_Field

Field Name Temp Field

Coord 1

Create 🔻

Spatial 🔻

Tabular Input

O Parametric

Т

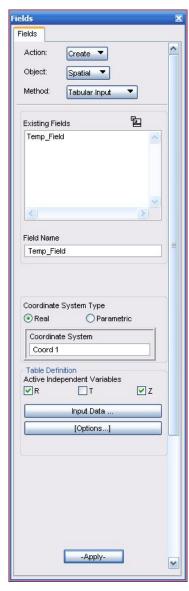
Input Data

[Options...

-Apply-

VZ

b

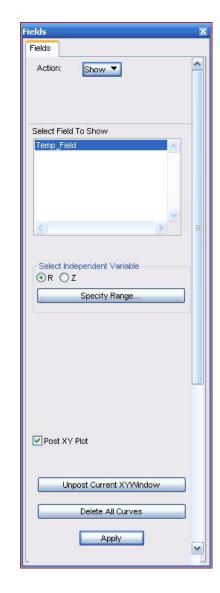

### CASE STUDY 4, FIELD: SPATIAL/TABULAR INPUT

- Input Data provides a 2 dimensional table with independent variables, R and Z.
  - The radii are in the "R" column (rows1,2,3), and the distances along exchanger are in the "Z" row (column 1,2).
- Under [Options], Extrapolation Option should be set to Linear Extrapolation.
  - In this case, the option could be ignored, as Nastran will only make a linear extrapolation from one point to another.

| able Opti | 0119                          |   |
|-----------|-------------------------------|---|
| Fields T  | able Options                  |   |
| Maximur   | n Number of R                 | ^ |
| 30        |                               |   |
| Maximur   | n Number of Z                 |   |
| 30        |                               |   |
|           | ation Option                  | I |
|           | ation Option<br>Extrapolation |   |
| Linear I  |                               | = |
| Linear I  | Extrapolation                 |   |

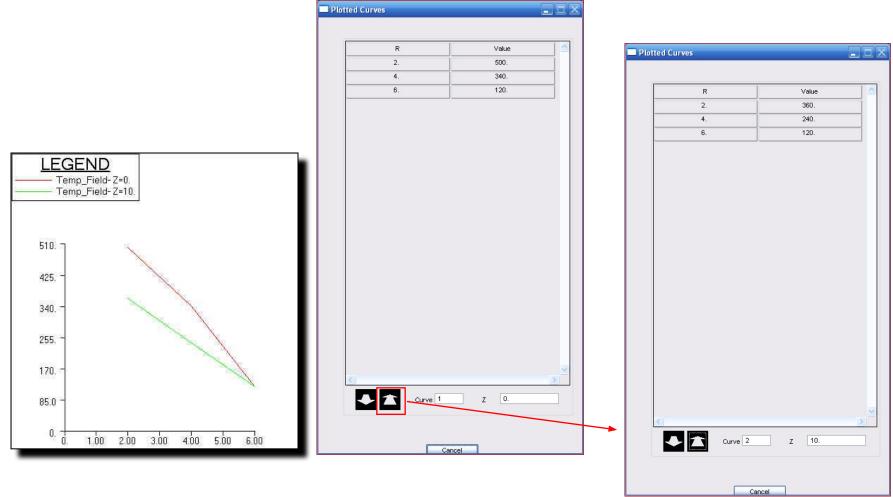
PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

| ut Data | 🗌 Auto Highligh |                       | Import/Export         |
|---------|-----------------|-----------------------|-----------------------|
| ata     | r               | Z-1                   | Z-2                   |
| 1       |                 | 2-1<br>0.0000000E+000 | 2-2<br>1.0000000E+001 |
| R-1     | 2.0000000E+000  | 5.0000000E+002        | 3.6000000E+002        |
| R-2     | 3.0000000E+000  | 4.5000000E+002        | 3.0000000E+002        |
| R-3     | 6.0000000E+000  | 1.2000000E+002        | 1.2000000E+002        |
| R-4     |                 |                       |                       |
| R-5     |                 |                       |                       |
| R-6     |                 |                       |                       |
| R-7     |                 |                       |                       |
| R-8     |                 |                       |                       |
| 1       |                 | <b>6</b>              | 1                     |



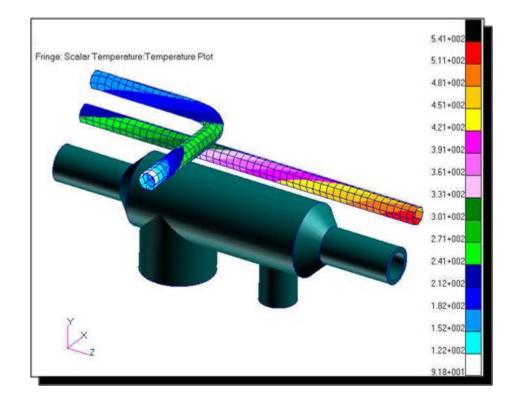

S8 - 56

#### CASE STUDY 4, FIELD: SPATIAL/TABULAR INPUT


- Verify the field by using Show.
  - Under Select Independent Variable, only one direction can be chosen. The chosen variable will become the Independent Variable in the form under Specify Range.
  - The Specify Range form generally appears filled in with the range and number of points taken from the input. This can, of course, be changed manually, or if no values appear, try checking Use Existing Points.

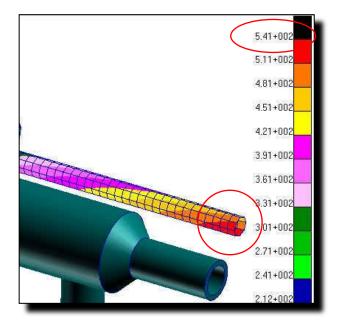
|   | Minimum | Maximum | No. of Points |
|---|---------|---------|---------------|
| २ | 2.0     | 6.0     | 3             |
| z | 0.0     | 10.0    | 2             |
|   |         |         |               |




#### **CASE STUDY 4, SHOW FIELD**

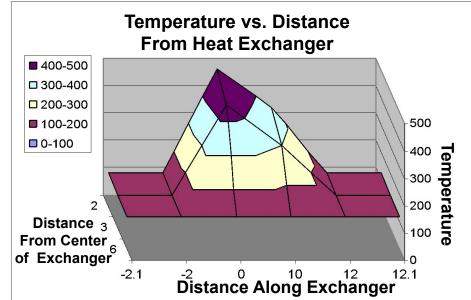
The plot shows the temperature gradient in the radial direction.
 There is a curve for each end of the exchanger, Z = 0 or 10.




#### CASE STUDY 4, TEMPERATURE LBC USING FIELD

- Using the field to create a temperature LBC for the thin tubes produces the following temperature distribution
- There may be a problem with this temperature distribution




#### CASE STUDY 4, TEMPERATURE LBC USING FIELD

- The maximum temperature is 541 degrees, which is > maximum temperature specified in the field, 500 degrees.
- It may be desired to limit the temperature created using the table.



#### **CASE STUDY 4, ADD DATA TO FIELD DEFINITION**

- To limit the field temperature, a decrease in temperature to the ambient 120 degrees is added to the field.
  - The extra data points will establish a zero temperature gradient for the remainder of the model.
    - Note that the distance –2.0 or 12.0 establish the drop in temperature, while –2.1 and 12.1 with identical temperature values establish the zero gradient.



| Distance (radial)<br>from center of | Distance along heat exchanger |        |        |        |        |        |
|-------------------------------------|-------------------------------|--------|--------|--------|--------|--------|
| exchanger                           | -2.1                          | -2.0   | 0.0    | 10.0   | 12.0   | 12.1   |
| 2                                   | 120 °F                        | 120 °F | 500 °F | 360 °F | 120 °F | 120 °F |
| 3                                   | 120 °F                        | 120 °F | 450 °F | 300 °F | 120 °F | 120 °F |
| 6                                   | 120 °F                        | 120 °F | 120 °F | 120 °F | 120 °F | 120 °F |

#### **CASE STUDY 4, ADD DATA TO FIELD DEFINITION**

- Modify the field, Temp\_Field.
  - Add the additional columns of data from the previous slide.

|           |                 |                  |                                              |                | UD UD          | iject. Spatial 🔻                          |
|-----------|-----------------|------------------|----------------------------------------------|----------------|----------------|-------------------------------------------|
|           | 🔲 2D Scal       | ar Table Data    |                                              |                | Me             | thod: Tabular Input 💌                     |
|           | Input Data      | T Auto Highlight | Impor                                        | t/Export       | Sel            | lect Field To Modify                      |
|           | Data            |                  |                                              |                | I              | emp_Field                                 |
|           |                 | R                | 1 2                                          | <b>_</b>       | -              |                                           |
|           | Z               | 6                | 99999E+000 -2.0000000                        |                |                | ا لنفر                                    |
|           |                 |                  | 00000E+002 1.2000000<br>00000E+002 1.2000000 |                |                | name Field as                             |
|           |                 |                  | 00000E+002 1.2000000                         |                |                | emp_Field                                 |
|           | 4               |                  |                                              |                |                |                                           |
|           | 5               |                  | ′                                            |                |                | andia ata Cuatana Tana                    |
|           | 6               |                  |                                              |                |                | ordinate System Type<br>Real C Parametric |
|           | 7               |                  |                                              |                | L C            | Coordinate System                         |
|           |                 |                  |                                              |                |                | Coord 1                                   |
|           |                 |                  |                                              |                | L≟<br>⊢Ta      | able Definition                           |
|           |                 |                  |                                              |                |                | re Independent Variables<br>□ □ T □ ▼ Z   |
| 1         | 2               | 3                | 4                                            | 5              | 6              |                                           |
| 9999E+000 | -2.0000000E+000 | 0.0000000E+000   | 1.0000000E+001                               | 1.2000000E+001 | 1.2100000E+001 | Input Data                                |
| 0000E+002 | 1.2000000E+002  | 5.0000000E+002   | 3.6000000E+002                               | 1.2000000E+002 | 1.2000000E+002 | [Options]                                 |
| 0000E+002 | 1.2000000E+002  | 4.5000000E+002   | 3.0000000E+002                               | 1.2000000E+002 | 1.2000000E+002 | -                                         |
| 0000E+002 | 1.2000000E+002  | 1.2000000E+002   | 1.2000000E+002                               | 1.2000000E+002 | 1.2000000E+002 | -                                         |
|           |                 |                  |                                              |                |                |                                           |

Fields

Action:

Modify

Data

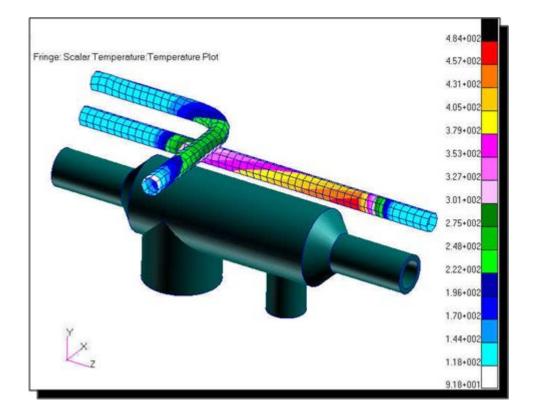
Ζ

1

2

3

-2.099


1.200

1.200

1.200

#### CASE STUDY 4, TEMPERATURE LBC USING FIELD MODIFIED

• The temperature distribution from the modified field, is shown below. The ends of the thin tubes are at or approaching 120 degrees.



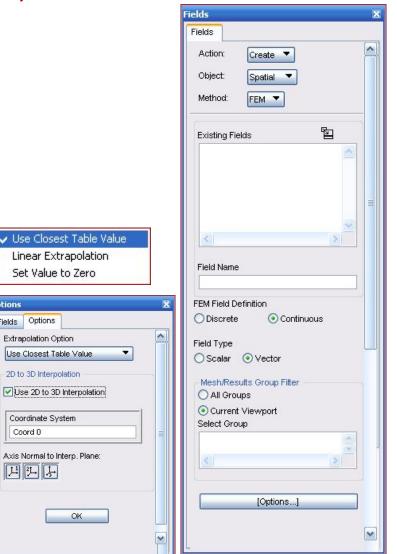
#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 64

# FIELDS, SPATIAL/FEM, DISCRETE

- Spatial/FEM, Discrete is used to create a field for a part of a finite element model.
  - Field Type can be either Scalar or Vector.
  - Entity Type can be either on Node or Element.
- The Input Data form is used to input data (Values) corresponding to either nodes or elements.
  - If the data is scalar, the value is a real scalar number, e.g. 10.5.
  - If the data is vector, the value is a vector, e.g. <x y z>.

|                            |             | Forms                   |
|----------------------------|-------------|-------------------------|
|                            |             | Fields                  |
|                            |             | Action: Create          |
|                            |             |                         |
|                            |             | Object: Spatial         |
|                            |             | Method: FEM             |
|                            |             | T                       |
| Discrete FEM Field Tabl    | e Data 📃 🗖  | Existing Fields         |
|                            |             |                         |
| Auto Highlight             |             |                         |
| nput Data                  | Import/Expo |                         |
|                            |             |                         |
|                            |             |                         |
| Entity                     | Values      | <u>&lt;</u>             |
| 1 Node 1                   | 10.         |                         |
| 2 Node 2                   | 20.         | Field Name              |
| 3 Node 3                   | 30.         |                         |
| 4                          |             | FEM Field Definition    |
| 5                          |             | ⊙ Discrete ○ Continuous |
| 6                          |             | Field Type              |
| 7                          |             | ⊙ Scalar ◯ Vector       |
| 8                          |             | Entity Type             |
| 9                          |             | Node     Element        |
| <u>&lt;</u>                |             | O LOUGH                 |
| _                          |             | Input Data              |
| Delete selec               | ted row(s)  |                         |
| Clear sele                 | cted cells  | L                       |
|                            |             |                         |
| lumber of rows to Insert 1 |             |                         |
|                            |             |                         |
| Insert r                   | 0W(\$)      |                         |
|                            |             |                         |
| ок                         | Undo        |                         |


#### FIELDS, SPATIAL/FEM, CONTINUOUS

- This is a useful tool for transferring displayed results (e.g. temperature distribution) to a Load/BC or element property.
- Spatial/FEM, Continuous is used to create a field based on an existing (displayed) scalar or vector plot for a finite element model.
  - The plot must be displayed in a viewport.
- Mesh/Results Group Filter allows different selections for the field by
  - individual group
  - multiple groups through selection
  - what is currently in the viewport

| Fields                     |               |           |   | × |
|----------------------------|---------------|-----------|---|---|
| Fields                     |               |           |   |   |
| Action:                    | Create 🔻      |           |   |   |
| Object:                    | Spatial       | -         |   |   |
| Method:                    | FEM 🔻         |           |   | _ |
| Existing Fiel              | ds            | Ra<br>La  | 3 |   |
|                            |               |           |   |   |
| <                          |               |           | > |   |
| Field Name<br>FEM Field De |               | ontinuous |   |   |
| Field Type                 |               |           |   |   |
| OScalar                    | Ovector       |           |   |   |
| Mesh/Resu                  | lts Group Fil | ter       |   |   |
| O All Group                |               |           |   |   |
| Ourrent '<br>Select Grou   |               |           |   |   |
|                            | •             |           | - |   |
| <u>×</u>                   |               |           | > |   |
|                            | [Options      | ]         |   |   |
|                            |               |           |   | ~ |

### FIELDS, SPATIAL/FEM, CONTINUOUS, OPTIONS

- **Extrapolation Option provides the** extrapolation methods that the other field types have.
- Using 2D to 3D Interpolation will project a 2D field into 3D space, as defined by the Axis Normal to Interp. Plane and the Coordinate System chosen.
  - This is particularly valuable when the \_ FEM field created will be applied to an entity that does not exactly match the original shells.
  - Additionally, an FEM field created from a 2D shell model could be applied to a 3D solid element model

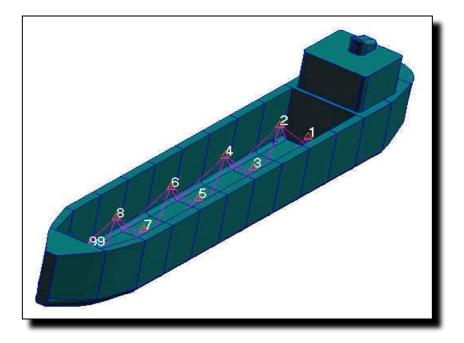


PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation Options

Fields

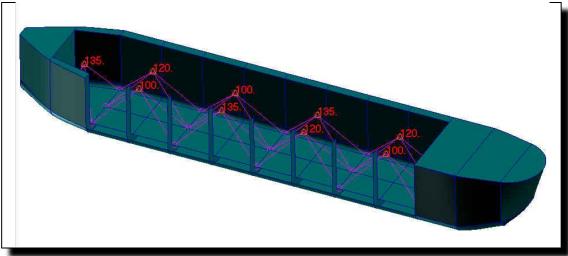
Options

Coord 0


부끄ト

#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 68


#### CASE STUDY 5, MODIFICATION OF MASS THROUGH FIELDS

- A cargo container ship must be analyzed with many different loads and loading/weight distributions.
- Use Patran Fields to manage and modify a number of masses that are used to represent the different loads.



#### CASE STUDY 5, DESCRIPTION

• The different potential loads for a cargo ship are represented by Nastran CONM2s connected to the structure with RBE2s.



- Patran has a special feature for importing model files with multiple point masses. The masses are consolidated into a single field used in a single property.
- These individual masses, for the field, can then be displayed and modified in a single table.

### **CASE STUDY 5, CREATING POINT MASSES**

 In this case study, the point masses are first created in Patran Properties: Create / 0D / Mass

 Three property sets; mass100, mass120, and mass135; each with its mass, e.g. 135.0 for property set mass135, and corresponding application region of three points (see the figure in the previous slide), are created.

|                            |                    |               |               | Type: Mass 💌         |              |
|----------------------------|--------------------|---------------|---------------|----------------------|--------------|
|                            |                    |               |               | Sets By: Name 🔻      | <pre>B</pre> |
| Input Properties           |                    |               |               | mass100<br>mass120   | <u>~</u>     |
| Lumped Point Mass ( CONM   | 12)                |               |               | niassi 20            |              |
| Property Name              | Value              | Value Type    |               |                      |              |
| Mass                       | 135                | Real Scalar   |               |                      | 2            |
| [Mass Orient. CID/CG]      |                    |               | (Here)        | Filter *             |              |
| [Mass Offset]              |                    |               |               | Property Set Name    |              |
| [Inertia 1,1]              |                    | Real Scalar   | SP.           | mass135              |              |
| [Inertia 2,1]              |                    |               |               |                      |              |
| [Inertia 2,2]              | Select Applicatio  | n Region      | ×             | Options:             |              |
|                            | Element Properties | Select Applic | cation Region |                      |              |
| [Inertia 3,1]              |                    |               |               |                      |              |
| [Inertia 3,2]              | Select: Entities   | -             |               |                      |              |
| <u> </u>                   |                    |               |               | Input Propertie      | as           |
|                            |                    |               |               |                      |              |
|                            | Application Reg    | lion          | <b>=</b>      | Select Application I | Region       |
|                            | Select Member      | Marca 20      |               |                      |              |
|                            |                    |               |               |                      |              |
| Enter the Mass or select a | Point 286 291      | 293           |               | Apply                |              |
|                            | 1                  |               |               |                      |              |
|                            |                    |               |               |                      |              |
|                            | Add                | Remo          | ve            |                      |              |
|                            | and the stars to   |               |               |                      |              |
| ОК                         | Application Regi   | on            |               |                      |              |
|                            |                    |               |               |                      | 0            |
|                            |                    |               |               | L                    |              |
|                            | -                  |               |               |                      |              |

x

~

lement Properties

Element Properties

Create 🔻

OD V

Action:

Object:

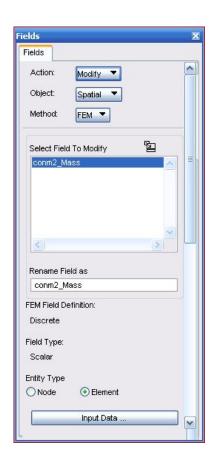
### **CASE STUDY 5, MODIFICATION OF THE MASS FIELD**

- Export a solver file (e.g. .DAT), then import the file.
- A new mass property set named conm2 is created.
- Properties: Modify shows that the new mass set, conm2, references the field f:conm2.Mass.

|                                       |              |                | Action: Modify                                                                                       |
|---------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------|
| Input Properties                      |              |                | Object: OD V                                                                                         |
| umped Point Mass ( CONM2              | )            |                | Type: Mass                                                                                           |
| roperty Name                          | Value        | Value Type     |                                                                                                      |
| lass                                  | f:conm2.Mass | Real Scalar    | Sets By: Name 🔻 🖺                                                                                    |
| [Mass Orient. CID/CG]                 | Coord0       |                | conm2 A<br>mass100<br>mass120                                                                        |
| [Mass Offset]                         | <0.0.0>      | Vector         | mass120                                                                                              |
| nertia 1,1]                           | 0            | Real Scalar    | <u>×</u>                                                                                             |
| nertia 2,1]                           | 0            | Real Scalar    | Filter *                                                                                             |
| nertia 3,1]<br>nertia 3,2]<br>Select: |              | ication Region | New Property Set Name<br>conm2<br>Options:<br>Lumped  Modify Properties<br>Select Application Region |
| nter the Inerti                       |              |                | Select Application Region                                                                            |

Element Properties

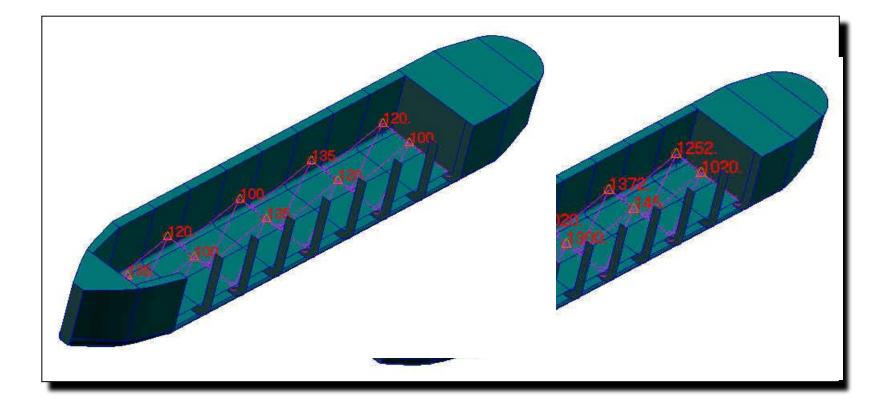
#### CASE STUDY 5, MODIFICATION OF THE MASS FIELD


- Fields: Modify, and select Spatial. Select the field conm2.Mass.
- Select Input Data. The table consists of element IDs and corresponding 0D mass values.

| Auto higi | hlight  |           |      |
|-----------|---------|-----------|------|
| ut Data   |         | Import/E× | port |
| -         | Entity  | Values    |      |
| 1         | Elem 1  | 100.      | -1   |
| 2         | Elem 2  | 120.      | -11  |
| 3         | Elem 3  | 120.      |      |
| 4         | Elem 4  | 135.      |      |
| 5         | Elem 5  | 135.      |      |
| 6         | Elem 6  | 100.      | -    |
| 7         | Elem 7  | 100.      |      |
| 8         | Elem 8  | 120.      |      |
| 9         | Elem 99 | 135.      |      |

| ields           |           |             | 2   |
|-----------------|-----------|-------------|-----|
| Fields          |           |             |     |
| Action:         | Modify 🔻  |             | ^   |
| Object:         | Spatial 🔻 |             |     |
| Method:         | EM 🔻      |             |     |
| Select Field To | ) Modify  | 5           |     |
| conm2_Mass      |           |             | III |
| Rename Field    | 95        | <u>&gt;</u> |     |
| conm2 Mass      |           |             |     |
| FEM Field Defin | ition:    |             |     |
| Discrete        |           |             |     |
| Field Type:     |           |             |     |
| Scalar          |           |             |     |
| Scalar          |           |             |     |
| Entity Type     |           |             |     |
| Entity Type     | 📀 Element |             |     |
| Entity Type     | Element   |             |     |

#### CASE STUDY 5, MODIFICATION OF THE MASS FIELD


- Click on a particular Values cell (mass). The value will be displayed in the Input Data box.
  - An Entity or Values entry can be changed once selected.
- After changing the value, press the Enter key to write the value to the cell.
  - After changing the data, click the Apply button on the main Fields form. This will update the field.

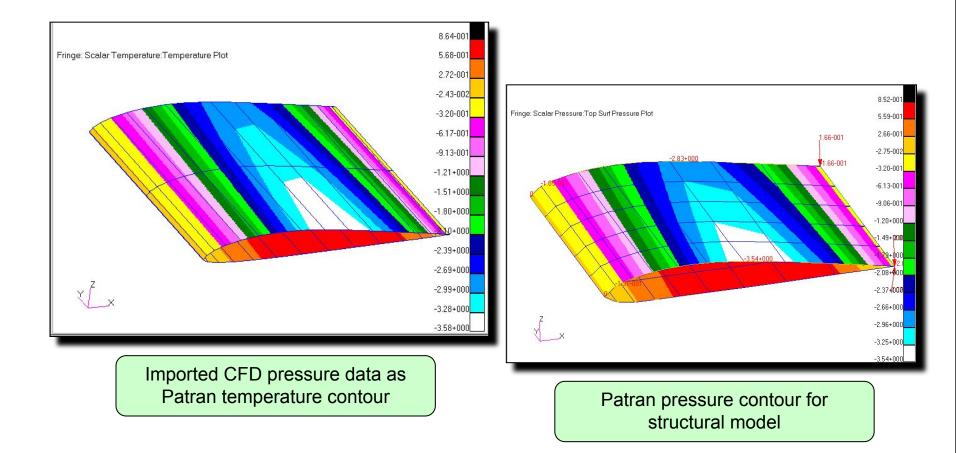


|         | hlight  |           |      |
|---------|---------|-----------|------|
| ut Data |         | Import/E× | port |
|         | Entity  | Values    |      |
| 1       | Elem 1  | 100.      | 71   |
| 2       | Elem 2  | 120.      |      |
| 3       | Elem 3  | 120.      |      |
| 4       | Elem 4  | 135.      |      |
| 5       | Elem 5  | 135.      |      |
| 6       | Elem 6  | 100.      |      |
| 7       | Elem 7  | 100.      |      |
| 8       | Elem 8  | 120.      |      |
| 9       | Elem 99 | 135.      |      |

#### CASE STUDY 5, MODIFICATION OF THE MASS FIELD

 The original mass properties and modified mass properties are shown below:




#### **CASE STUDY 5, ALTERNATE METHOD**

 For this case study, individual properties (e.g. mass135, mass=135, Point 266, 291, 293) were first created, then the fields representing these properties were created as a result of exporting then importing a solver model file (e.g. .DAT). Another option would have been to make the field for the masses directly in Patran. Either approach would work.

#### **CASE STUDY 6**

#### FEM FIELD, CONTINUOUS CFD PRESSURE TO PATRAN PRESSURE

#### CASE STUDY 6, APPLYING CFD PRESSURE DATA FEM FIELD, CONTINUOUS



PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

- This case study demonstrates the use of FEM Field, Continuous as a way of creating an LBC for a structural model from results for a different type of model (e.g. a CFD model).
- This case study demonstrates one way to get CFD pressure data into Patran.
- The method shown is for CFD data in the form of point locations and corresponding pressures.
- An attempt will be made to explain problems with this approach and discuss alternatives. There are other approaches for getting the data into Patran.

#### **CASE STUDY 6, CFD PRESSURE DATA**

- Given
  - Table of position (x,y,z) and corresponding pressure data.
  - Model is of an Eppler 205 airfoil consisting of 3 rib type section of data.
- Example of given data:

| х  | У      | Z      | pressure     |
|----|--------|--------|--------------|
| 1. | 00000. |        | .0000-0.2072 |
| 0. | 97050. | .00000 | .0043-0.4144 |
| 0. | 92290. | .00000 | .0120-1.1037 |
| 0. | 85620. | .00000 | .0220-1.8829 |
| 0. | 77410. | .00000 | .0342-2.6467 |
| 0. | 68110. | .00000 | .0478-3.2535 |
| 0. | 58220. | .00000 | .0615-3.5787 |
| 0. | 48270. | .00000 | .0734-3.5436 |
|    |        |        |              |

# **CASE STUDY 6, PATRAN IMPORT METHODS**

- The most practical way to import this form of data is to put it in the form of Nastran input records (bulk data).
  - This could be accomplished in a number of ways:
    - A script could be created that reads the data, then writes it in the format needed for Nastran (bulk data)
    - The text information could be brought into another program such as Microsoft Excel for manipulation into Nastran input record format.
    - A modification or adjustment to the CFD code could possibly produce Nastran records.
  - Once the data is in the form of an Nastran input file, it can be imported into Patran using File/Import/Nastran Input.

#### • Other approaches include the use of

- Patran neutral and results files
- ABAQUS input file, .inp file (text file)
- ANSYS input file (text file)

#### CASE STUDY 6, CREATE NASTRAN INPUT FILE

 In this example, Microsoft Excel is used. Below, is a screen snap-shot of the raw data brought in from the text file.

| 1         X         Y         Z         press           2         1.0000         0.0000         0.0000         -0.20           3         0.9705         0.0000         0.0043         -0.41           4         0.9229         0.0000         0.0120         -1.10           5         0.8562         0.0000         0.0220         -1.88 |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3         0.9705         0.0000         0.0043         -0.41           4         0.9229         0.0000         0.0120         -1.10                                                                                                                                                                                                       | sure |
| 4 0.9229 0.0000 0.0120 -1.10                                                                                                                                                                                                                                                                                                              | 072  |
|                                                                                                                                                                                                                                                                                                                                           | 144  |
| 5 0.8562 0.0000 0.0220 .1.88                                                                                                                                                                                                                                                                                                              | 037  |
| 3 0.0302 0.0000 0.0220 F1.00                                                                                                                                                                                                                                                                                                              | 329  |
| 6 0.7741 0.0000 0.0342 -2.64                                                                                                                                                                                                                                                                                                              | 467  |
| 7 0.6811 0.0000 0.0478 -3.25                                                                                                                                                                                                                                                                                                              | 535  |

• The Excel file data is divided into three sheets. The first one (shown) contains the raw data.

#### CASE STUDY 6, CREATE NASTRAN INPUT FILE

#### Second sheet

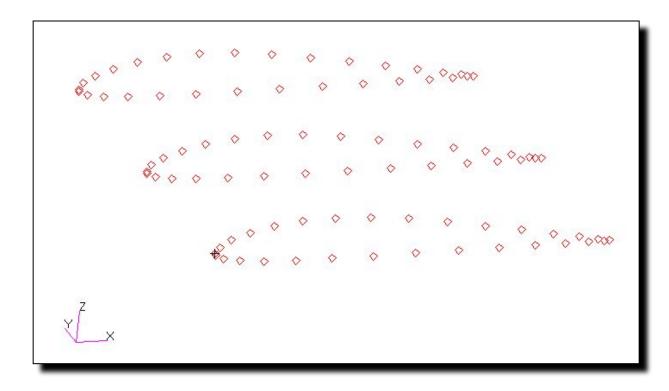
Location (x,y,z) data

|   | A    | В | С  | D       | E       | F       |
|---|------|---|----|---------|---------|---------|
| 1 |      |   |    |         |         |         |
| 2 | GRID | 1 | 0  | 1.00000 | 0.00000 | 0.00000 |
| 3 | GRID | 2 | 0  | 0.97049 | 0.00000 | 0.00427 |
| 4 | GRID | 3 | 0  | 0.92285 | 0.00000 | 0.01196 |
| 5 | GRID | 4 | 0  | 0.85624 | 0.00000 | 0.02199 |
| 6 | GRID | 5 | 0  | 0.77412 | 0.00000 | 0.03419 |
| 7 | GRID | 6 | 0  | 0.68108 | 0.00000 | 0.04777 |
| 8 | GRID | 7 | n. | 0.58218 | 0,00000 | 0.06147 |

#### Third sheet

Pressure data

|   | A    | В | С | D        | E |
|---|------|---|---|----------|---|
| 1 |      |   |   |          |   |
| 2 | TEMP | 1 | 1 | -0.20720 |   |
| 3 | TEMP | 1 | 2 | -0.41440 |   |
| 4 | TEMP | 1 | 3 | -1.10373 |   |
| 5 | TEMP | 1 | 4 | -1.88287 |   |
| 6 | TEMP | 1 | 5 | -2.64672 |   |
| 7 | TEMP | 1 | 6 | -3.25352 |   |
| 8 | TEMP | 1 | 7 | -3 57866 |   |


#### CASE STUDY 6, CREATE NASTRAN INPUT FILE

- Once the data is arranged, write it to a text file(s).
- Once the text file(s) is created, it can be imported into Patran.

| 🗖 Import                                     |                                                            |                                                                                                |
|----------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Look jn: 🔁                                   |                                                            | Object: Model  Source: MSC.Nastran Input Current Group default_group MSC.Nastran Input Options |
| File <u>n</u> ame:<br>Files of <u>t</u> ype: | E205.bdf -Apply-<br>MSC.Nastran Input Files {*.bdf} Cancel |                                                                                                |

# CASE STUDY 6, VERIFY IMPORTED NASTRAN INPUT FILE DATA

• Imported Nastran grid points, called Patran nodes.

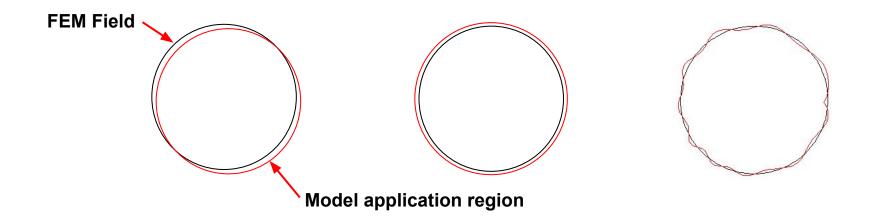


PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

### CASE STUDY 6, VERIFY IMPORTED NASTRAN INPUT FILE DATA

- Under Loads/BCs, the temperature should be plotted to make sure the data is correct.
  - If Tempe\_temp.1 is not listed under Assigned Load/BC Sets, go to Case Control. Make sure the load is assigned to a load case.




| .oad/Bound | lary Conditions       |   | ×    |
|------------|-----------------------|---|------|
| Load/Bound | lary Conditions       |   |      |
| Action:    | Plot Markers 🔻        |   | •    |
|            |                       |   |      |
|            |                       |   |      |
| Modify     | Vector Display        |   |      |
|            |                       |   |      |
| Current L  | .oad Case:<br>Default |   |      |
| Type:      | Static                |   |      |
|            | Load/BC Sets          |   |      |
|            |                       |   |      |
|            |                       |   |      |
|            |                       |   |      |
|            |                       |   |      |
|            |                       | = | 1111 |
| E          |                       | ~ |      |
|            |                       |   |      |
|            |                       |   |      |
|            |                       |   |      |
|            |                       |   |      |
| Group Fit  | tor                   |   |      |
| O All Gro  |                       |   |      |
| 💿 Currer   | it ∀iewport           |   |      |
| Select Gro |                       |   |      |
| default_c  | jroup                 |   |      |
|            |                       |   |      |
|            |                       |   |      |
|            |                       |   |      |
|            |                       |   |      |
| <          |                       | 2 |      |
|            |                       |   |      |
|            |                       |   |      |
|            | -Apply-               |   |      |
|            |                       |   | 1    |
|            |                       |   | _    |

# CASE STUDY 6 TEMPERATURE TO PRESSURE IN PATRAN

 Use the temperature information in Patran to create pressure for a structural model. This is done using a continuous FEM Field. Once the field is created, it can then be used to create a Loads/BCs pressure set.

# CASE STUDY 6 GENERAL ISSUES FOR CONTINUOUS FEM FIELDS

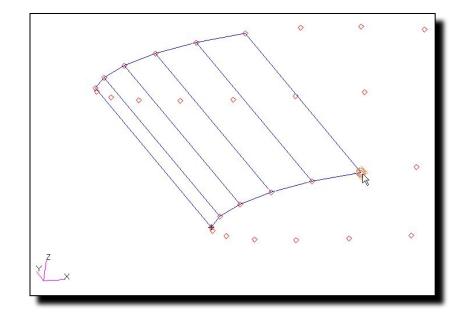
- There are several issues that may have to be dealt with in creating continuous FEM Fields
  - One issue is that if the domain/region for the creation of the FEM Field is not exactly (within tolerance) where the field is to be applied, then, when the field is used averaging (interpolating/extrapolating) must be performed. The effects of the averaging are not always known. The averaging Options may help to improve the quality of averaging. Sometimes, values obtained by the FEM Field, outside of the domain used for creating it, are of poor quality.



# CASE STUDY 6, GENERAL ISSUES FOR CONTINUOUS FEM FIELDS

- (Continued) This issue can be partially resolved for 2D models by enabling an Option to extend the field in one of three coordinate directions. Effectively, this maps 2D data to 3D space. This can be an effective method, but limits the field creation to surfaces (of elements) to those that do not overlap in that "one" direction. This can be dealt with by having a group for each surface (of elements). This is discussed herein.
- Another approach is to generate the FEM Field from a domain that is slightly larger than the application region that the field will be used for. This is not always possible for the given model and data, but may be implemented in Patran by slightly scaling-up the original model. A scaling of 1% may be acceptable.
- "Secondary" FEM Field averaging is done if the model the field is being applied to is very small relative to the size of the domain used for creating the FEM Field; as the size of the model approaches the global model tolerance (e.g. 0.005), secondary averaging is done. A possible approach for dealing with this problem is to scale-up the model, even by a factor as large as 10.

#### CASE STUDY 6, GENERAL ISSUES FOR CONTINUOUS FEM FIELDS

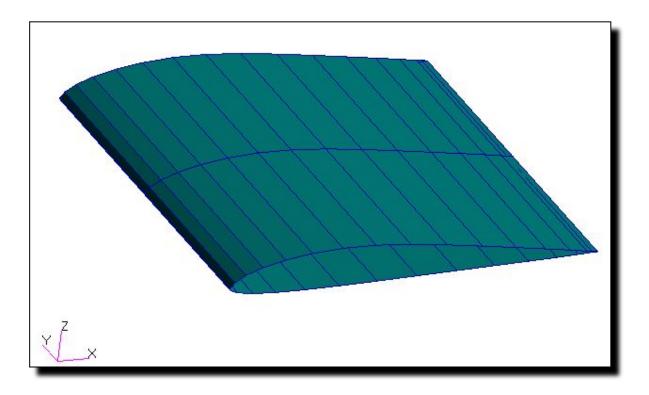

- Another issue with creating FEM Fields is that this type of field must be created from a contour/fringe or vector plot that is displayed on the screen.
   For scalar results (e.g. temperature), only contour plots can be created, and elements are needed to create this type of plot.
  - This is a problem for this CASE STUDY as elements were not available with the CFD data.
  - Some CFD software will output elements (generally, triangular elements). If the software being used does not do this, then 2D elements can be created manually in Patran. Sometimes, 3D elements are necessary.

#### **CASE STUDY 6, PROBLEM USING 1D ELEMENTS**

- Attempts have been made to make an FEM Field with 1D elements that connected all the grids. This FEM Field was then applied to a 2D set of elements. The averaging was poor. The only exception was where the CFD node locations very closely or exactly coincided with the structural mesh nodes that the pressure was to be applied to.
- It is not recommended to use FEM Fields created from 1D elements unless the field is applied to 1D elements with the same node locations.

#### **CASE STUDY 6, MANUALLY CREATE 2D ELEMENTS**

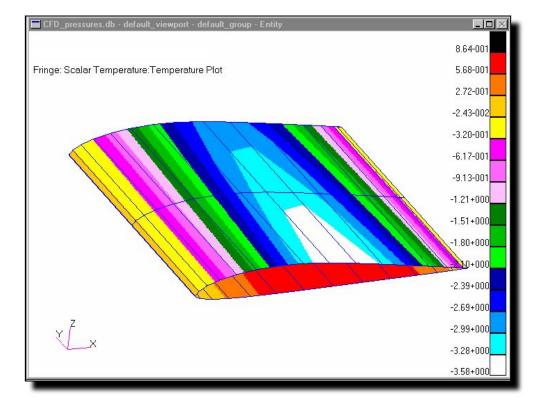
- Because there are no 2D elements to create the FEM Field from, it is necessary to create the elements manually.
  - Use the form for Elements, and select the nodes that are to be at the corners of the Quad4 elements.

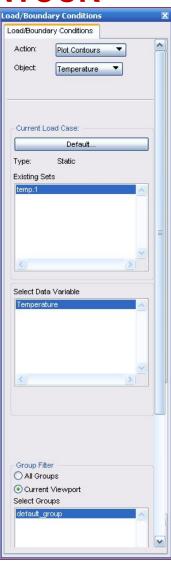



| inite Elements                              | ×   |
|---------------------------------------------|-----|
| Finite Elements                             |     |
| Action: Create                              | ^   |
| Object: Element                             |     |
| Method: Edit 💌                              |     |
| Element ID List                             |     |
| 1                                           |     |
| Shape: Quad                                 | III |
| Topology: Quad4                             |     |
| Pattern: Standard                           |     |
| Prop. Name: - None -                        |     |
| Prop. Type: - N/A -<br>Select Existing Prop |     |
|                                             |     |
| Create New Property                         |     |
| Use existing midnodes                       |     |
| Auto Execute                                |     |
| Node 1 =                                    |     |
| Node 2 =                                    |     |
|                                             |     |
| Node 3 =                                    |     |
| Node 4 =                                    |     |
| -Apply-                                     |     |
|                                             |     |
|                                             | ļ   |

PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

#### **CASE STUDY 6, MANUALLY CREATE 2D ELEMENTS**

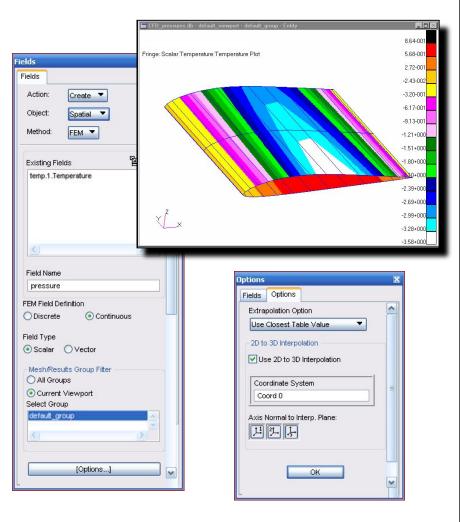

 Once the 2D elements are created, the model should look like the following. There are no elements on the sides.



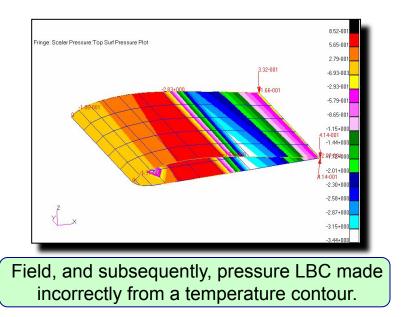

PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

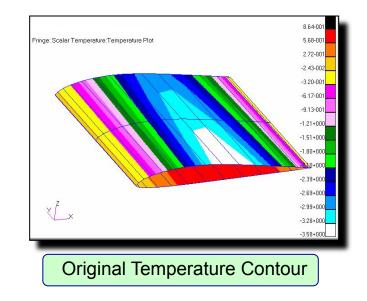
# **CASE STUDY 6, DISPLAYING TEMPERATURE CONTOUR**

• With the 2D elements created, using the imported nodes, the temperature data can be displayed.

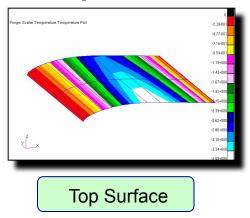


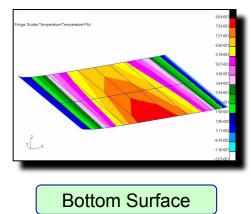


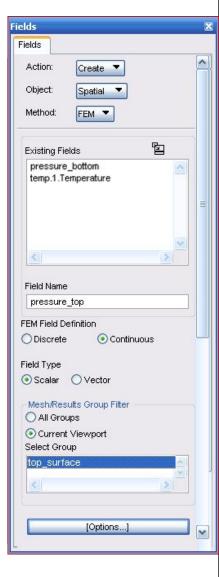


PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation


S8 - 94

- Create the FEM Field using the posted temperature fringe.
- Fill out the Fields menu as shown, and go to Options
  - Under Options, check the 2D to 3D interpolation, and pick the direction to project. In this case, it is the Z-direction.
- Ignore (incorrectly) the warning about creating fields from overlapping surfaces, of 2D elements (as seen looking in the Z-direction).



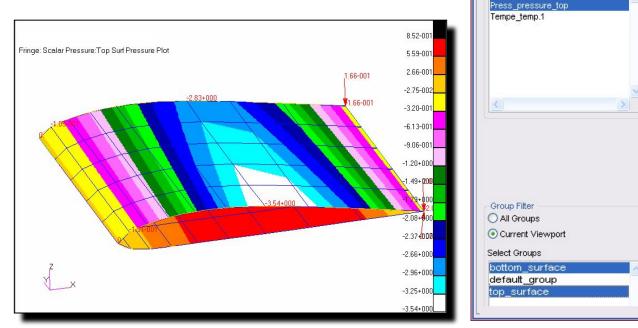


- Looking ahead, the consequences of ignoring the surface overlap can be seen.
  - Notice that the pressure distribution for the top and bottom surfaces is similar. This is the first visual clue that something is wrong.






- To make the FEM Field correctly, simply put the top and bottom surfaces (of elements) in separate groups.
  - Post only one of the two groups, then create an FEM Field for it. Repeat this for the other group.
  - The form to the right shows that the FEM field, "pressure\_bottom", was created, and "pressure\_top" is ready for creation using the top surface of elements.
- Again, make sure that the 2D to 3D interpolation under Options is enabled.








PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 97

- Create the pressure LBCs using the two FEM Fields.
  - Loads/BCs: Create/Pressure/Element Uniform
  - Input Data
    - Select one FEM Field (e.g. pressure\_top)
  - Application Region
    - Select the corresponding surface (e.g. top surface (of elements))



.oad/Boundary Conditions

Modify Vector Display
Current Load Case:

Assigned Load/BC Sets

Press\_pressure\_bottom

Plot Markers

Default.

Static

-

Action:

Type:

~

Y

PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 98

#### **EXERCISES**

 Perform Workshop 19 "Global/Local Modeling Using FEM Fields" in your exercise workbook.

#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 100

#### FIELDS, MATERIAL PROPERTY/TABULAR INPUT

- This type of field is used to create varying material properties using tabular input.
- The independent variable(s) can be chosen to appropriately describe the material behavior.
  - Any combination of the three variables Temperature, Strain, or Strain Rate can be used for a field. If the variable Time or Frequency is used, only one of them can be used, and none of the other three variables can be used.

| ields Action: Create Object: Material Property Method: Tabular Input Existing Fields Existing Fields Field Name Field Name Table Definition Active Independent Variables Table Definition Active Independent Variables Table Definition Competing (T) Strain (e) Strain Rate (er) Time (t) Frequency (f) Magnetic Field Intensity (H) Input Data [Options]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lds            |                 |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------|
| Object: Material Property   Method: Tabular Input   Existing Fields Existing Fields Existing Fields Existing Field Name Field Name Field Name Field Name Strain Rete Strain (e) Strain (e) Strain Rate (er) Time (t) Frequency (f) Magnetic Field Intensity (H) Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ields          |                 |         |
| Method: Tabular Input  Existing Fields  Existing Fields  Field Name  Table Definition  Active Independent Variables  Temperature (T)  Strain (e)  Strain Rate (er)  Time (t)  Frequency (f)  Magnetic Induction (B)  Magnetic Field Intensity (H)  Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Action:        | Create 🔻        |         |
| Existing Fields         Existing Fields         Existing Fields         Implement of the second | Object:        | Material Prop   | oerty 🔻 |
| Table Definition         Active Independent Variables         Image: Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Magnetic Field Intensity (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Method:        | Tabular Input   | t 🔻     |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Existing Field | ls              | r<br>R  |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2              |                 | ~       |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |         |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |         |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |         |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |         |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <.             |                 | >       |
| Table Definition         Active Independent Variables         Temperature (T)         Strain (e)         Strain Rate (er)         Time (t)         Frequency (f)         Magnetic Induction (B)         Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |         |
| Active Independent Variables  Temperature (T)  Strain (e)  Strain Rate (er)  Time (t)  Frequency (f)  Magnetic Induction (B)  Magnetic Field Intensity (H)  Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Field Name     |                 |         |
| Active Independent Variables  Temperature (T)  Strain (e)  Strain Rate (er)  Time (t)  Frequency (f)  Magnetic Induction (B)  Magnetic Field Intensity (H)  Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5              |                 |         |
| Active Independent Variables  Temperature (T)  Strain (e)  Strain Rate (er)  Time (t)  Frequency (f)  Magnetic Induction (B)  Magnetic Field Intensity (H)  Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 |         |
| Active Independent Variables  Temperature (T)  Strain (e)  Strain Rate (er)  Time (t)  Frequency (f)  Magnetic Induction (B)  Magnetic Field Intensity (H)  Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 |         |
| Temperature (T)  Strain (e)  Strain Rate (er)  Time (t)  Frequency (f)  Magnetic Induction (B)  Magnetic Field Intensity (H)  Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                 |         |
| Strain (e) Strain Rate (er) Time (t) Frequency (f) Magnetic Induction (B) Magnetic Field Intensity (H) Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | JIES    |
| Strain Rate (er) Time (t) Frequency (f) Magnetic Induction (B) Magnetic Field Intensity (H) Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>       |                 |         |
| Time (t) Frequency (f) Magnetic Induction (B) Magnetic Field Intensity (H) Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                 |         |
| Frequency (f) Magnetic Induction (B) Magnetic Field Intensity (H) Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strain Rat     | te (er)         |         |
| Magnetic Induction (B) Magnetic Field Intensity (H) Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time (t)       |                 |         |
| Magnetic Field Intensity (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequenc       | ;y (f)          |         |
| Input Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Magnetic       | Induction (B)   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                 | . 705   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Magnetic       | Field Intensity | ( LOJ   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Magnetic       |                 |         |

#### FIELDS, MATERIAL PROPERTY/TABULAR INPUT

The number of variables selected determines whether a one-, two-, or three-dimensional table for input will be displayed.

|          |            | Import/Expo | ort |                           |
|----------|------------|-------------|-----|---------------------------|
| Data     |            |             |     | Field Name                |
|          | e-1        | e-2         |     |                           |
|          |            |             |     |                           |
| T-1      |            |             |     | Table Definition          |
| T-2      |            |             |     | Active Independent Variak |
| T-3      |            | 1           |     | Temperature (T)           |
| T-4      |            |             |     | Strain (e)                |
| T-5      |            | 1           |     | Strain Rate (er)          |
| T-6      |            | -           |     | Time (t)                  |
| <u> </u> |            |             |     | Frequency (f)             |
| <        |            |             |     | Magnetic Induction (B)    |
| 🕹 🛣 La   | iyer: 1 er |             |     | Magnetic Field Intensity  |
|          |            |             |     | Input Data                |
|          |            | Undo        |     | [Options]                 |

Fields

Fields

Action:

Object:

Method:

Existing Fields

Create 🔻

Material Property

Tabular Input

\*

-

阳

#### FIELDS, MATERIAL PROPERTY/TABULAR INPUT, OPTIONS

- The top portion of the Tabular Input, [Options] form controls how many data points can be input for each variable (e.g. Temperature).
- Extrapolation Option includes the following choices:
  - Use Closest Table Value
  - Linear Extrapolation
  - Set Value to Zero
- Incomplete Data Action allows the selection of how not having adequate data will be dealt with



| le Options                  | × |
|-----------------------------|---|
| elds Table Options          |   |
| Maximum Number of T         |   |
| 30                          |   |
| Maximum Number of e         |   |
| 30                          |   |
| Maximum Number of er        |   |
| 10                          | ~ |
| Extrapolation Option        |   |
| Use Closest Table Value 🔹 🔻 |   |
| Incomplete Data Action      |   |
| Abort 🔻                     |   |
| ОК                          |   |

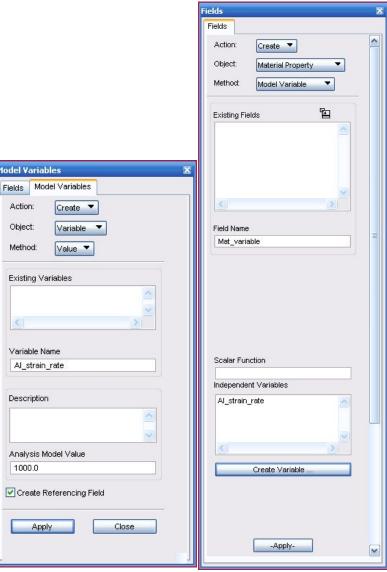
| elds                                                                                                   |                                                        |   |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|
| Action:                                                                                                | Create 🔻                                               |   |
| Object:                                                                                                | Material Property                                      | • |
| Method:                                                                                                | Tabular Input                                          |   |
| Existing Field                                                                                         | ds 🖺                                                   | j |
|                                                                                                        |                                                        |   |
| 1                                                                                                      |                                                        |   |
| (1962)                                                                                                 |                                                        |   |
| Field Name                                                                                             |                                                        |   |
| Field Name                                                                                             |                                                        |   |
|                                                                                                        |                                                        |   |
| Table Defin                                                                                            |                                                        |   |
| Table Defin<br>Active Indep                                                                            | endent Variables                                       |   |
| Table Defin<br>Active Indep                                                                            | endent Variables<br>ture (T)                           |   |
| Table Defin                                                                                            | endent Variables<br>ture (T)<br>)                      |   |
| Table Defin<br>Active Indep<br>V Tempera<br>V Strain (e)                                               | endent Variables<br>ture (T)<br>)                      |   |
| Table Defin<br>Active Indep<br>Tempera<br>Strain (e)                                                   | endent Variables<br>ture (T)<br>)<br>te (er)           |   |
| Table Defin<br>Active Indep<br>Tempera<br>Strain (e)<br>Strain Ra<br>Time (t)                          | endent Variables<br>ture (T)<br>)<br>te (er)           |   |
| Table Defin<br>Active Indep<br>Tempera<br>Strain (e)<br>Strain Ra<br>Time (t)<br>Frequence<br>Magnetic | endent Variables<br>ture (T)<br>)<br>te (er)<br>sy (f) |   |

#### FIELDS, MATERIAL PROPERTY/GENERAL

- Material Properties/General allows the cross reference of any material property to any other property or a user defined equation.
  - With Function Term Type set to P3 Functions, an original function will be created.
  - With Function Term Type set to Independent Variables, predefined functions (e.g. er) can be picked and included in the equation.

| 🔲 General Field Inp                            | ut Data 🔹 🗖 🗦               |   | 🔲 General Field Input Data                   |                           |
|------------------------------------------------|-----------------------------|---|----------------------------------------------|---------------------------|
| Select Function Term: -<br>Function Term Type: | P3 Functions                |   | Select Function Term:<br>Function Term Type: | Independent Variables     |
| Term Sub-Type:                                 | - none - 💌                  |   |                                              |                           |
| Select Function Term                           |                             | 8 | Select Function Term:                        | e<br>er<br>f              |
| Select Arithmetic<br>Operator:                 | + - * / * ( )               |   | Select Arithmetic<br>Operator:               | * - * / * ( )             |
| Function Expression                            |                             |   | Function Expression                          |                           |
|                                                |                             |   |                                              |                           |
| ĺ                                              | Modify Highlighted Function |   | Moc                                          | lify Highlighted Function |
|                                                | ОК                          |   |                                              | ок                        |

|                   |                        |       | X |
|-------------------|------------------------|-------|---|
| ields             |                        |       |   |
| Action:           | Create 🔻               |       | ^ |
| Object:           | Material Proper        | ty 🔻  |   |
| Method:           | General 🔻              |       |   |
| Existing Fi       | elds                   | ja    |   |
| 2                 |                        | ~     | = |
| Field Name        | •                      | >     |   |
|                   |                        |       |   |
|                   |                        |       |   |
|                   |                        |       |   |
| Coordinate        | e System Type          | etric |   |
| 💿 Real            |                        | etric |   |
| 💿 Real            | O Paramo<br>ate System | etric |   |
| Real     Coordina | O Paramo<br>ate System | etric |   |


PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 104

#### FIELDS, MATERIAL PROPERTY/MODEL VARIABLE

- Material Property/Model Variable is intended for creating fields from user defined variables.
- To create, modify, show, or delete the variables for Material Property fields, select Create/Variable
- The variables can also be accessed under Tools: Model Variables from the Patran main menu.

| isplay Preferences T | ools Help Utilities                                       |          |                                                  |
|----------------------|-----------------------------------------------------------|----------|--------------------------------------------------|
|                      | MSC.Fatigue                                               |          |                                                  |
|                      | Laminate Modeler                                          | •        |                                                  |
|                      | Enterprise MVision<br>Random Analysis<br>Analysis Manager | •        |                                                  |
|                      | List<br>Mass Properties<br>Beam Library<br>Regions        | •        |                                                  |
|                      | Modeling                                                  |          | Properties Import                                |
|                      | Design Study                                              | •        | Model Variables                                  |
|                      | Results                                                   | <u>)</u> | Experimental Data Fitting                        |
|                      | User Defined AOM<br>Pre-Release                           | ×        | Bolt Preload<br>Rotor Dynamics<br>NSM Properties |



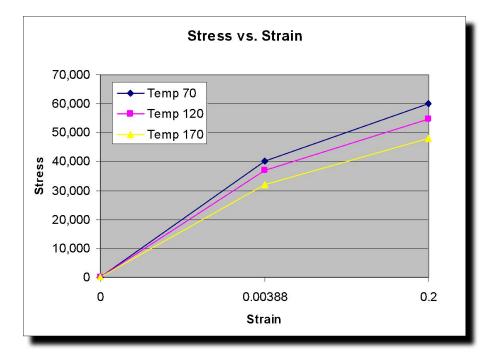
#### FIELDS MODEL VARIABLE

- Model variables are single value parameters (constants).
- The value can be specified either by specifying a numerical value or extracting one from existing Property, Beam Dimension or Material.
  - If the value is extracted, the original numerical value is replaced with a variable name.
  - Once the variable is created, it can be changed or checked under Modify/Variable or Show/Variable.
- Once variables are used in LBCs, materials, or element properties, they can be modified; they can be used in parametric studies.

| Model Variable     | 25                         | × |
|--------------------|----------------------------|---|
| Fields Mode        | l Variables                |   |
| Action:<br>Object: | Create  Variable           |   |
| Method:            | ✓ Value<br>Property        |   |
| Existing Vari      | Beam Dimension<br>Material |   |
| <                  | <u>&gt;</u>                |   |
| Variable Nam       | ie                         |   |
| Description        |                            |   |
|                    | ~                          |   |
| Analysis Moo       | tel Value                  |   |
| Create Ret         | ferencing Field            |   |
| Apply              | Close                      |   |
|                    |                            |   |

#### FIELDS MODEL VARIABLE

- Create/Variable/Value has an additional option to subsequently create a Field.
  - If Create Referencing Field is checked, then, a Field that references the variable will be created with the same name as the variable. The Field is pickable from Load/BCs, Properties and Properties/Beam Library.
    - For the field to appear in Material, the variable has been created under Variable/Material
  - If the **Create Referencing Field** is un-checked, then a field will not be created automatically.
    - A Field created with that variable can still be used in any part of Patran where it is appropriate (e.g. Loads/BCs).


| Model ¥ariable | 5                                      | × |
|----------------|----------------------------------------|---|
| Fields Model   | Variables                              |   |
| Action:        | Create 🔻                               |   |
| Object:        | Variable 🔻                             |   |
| Method:        | ✓ Value                                |   |
| Existing Varia | Property<br>Beam Dimension<br>Material |   |
| <              | >                                      |   |
| Variable Name  |                                        |   |
|                |                                        |   |
| Description    |                                        |   |
|                | <                                      |   |
| Analysis Mode  | el Value                               |   |
|                |                                        |   |
| 🗹 Create Refe  | erencing Field                         |   |
| Apply          | Close                                  |   |
|                |                                        |   |

#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

S8 - 108

## CASE STUDY 7, MATERIAL PROPERTY FIELD

- Create a single field that describes an Aluminum alloy over a temperature and strain domain.
- Use the table data provided



Stress vs. Temperature and Strain

|          |   | Strain  |        |
|----------|---|---------|--------|
| Temp (F) | 0 | 0.00388 | 0.2    |
| 70       | 0 | 40,000  | 60,000 |
| 120      | 0 | 36,782  | 54,882 |
| 170      | 0 | 32,010  | 47,810 |

PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

#### **CASE STUDY 7, MATERIAL PROPERTY FIELD**

 To create the field, select Temperature and Strain for Active Independent Variables.

#### Enter the data in the Input Data form

- The first column are the temperatures (rows 1,2,3).
- The first row contains the strains (columns 1,2,3).
- The table entries are the stresses for the corresponding temperatures and strains.

| nt Data | 📃 Auto Highligi |                | Import/Export. |   | Input Data | Auto Highlig   |                | Import/Export  |     |
|---------|-----------------|----------------|----------------|---|------------|----------------|----------------|----------------|-----|
| )ata —  |                 |                |                |   | Data       |                |                |                |     |
|         |                 | e-1            | e-2            |   |            | e-1            | e-2            | e-3            |     |
|         |                 | 0.0000000E+000 | 3.8800000E-003 | 1 |            | 0.0000000E+000 | 3.8800000E-003 | 2.0000000E-001 | 1   |
| T-1     | 7.0000000E+001  | 0.0000000E+000 | 4.0000000E+004 |   | T-1        | 0.0000000E+000 | 4.0000000E+004 | 6.0000000E+004 |     |
| T-2     | 1.2000000E+002  | 0.0000000E+000 | 3.6782000E+004 |   | T-2        | 0.0000000E+000 | 3.6782000E+004 | 5.4882000E+004 | 1 - |
| T-3     | 1.700000E+002   | 0.0000000E+000 | 3.2010000E+004 | 1 | T-3        | 0.0000000E+000 | 3.2010000E+004 | 4.7810000E+004 | 1   |
| T-4     |                 |                |                | 1 | T-4        |                |                |                | 1   |
| T-5     |                 |                |                | 1 | T-5        |                |                |                | 1   |
| T-6     |                 | H              |                | 1 | T-6        |                |                |                | 1   |
| T-7     | 1               |                |                | 1 | T-7        |                |                |                | 1   |
| T-8     |                 |                |                |   | T-8        |                | ·              | ·              |     |
| (]      |                 | ***            |                |   |            | 5<br>111       |                |                | 3   |

|                                                                                    |                                                                                                                                |    | 1 |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----|---|
| ields                                                                              |                                                                                                                                |    |   |
| Action:                                                                            | Create 🔻                                                                                                                       |    | ^ |
| Object:                                                                            | Material Property                                                                                                              | •  |   |
| Method:                                                                            | Tabular Input                                                                                                                  | 1  |   |
|                                                                                    |                                                                                                                                |    | 2 |
| Existing Fiel                                                                      | lds                                                                                                                            | 'n |   |
|                                                                                    |                                                                                                                                | ~  |   |
|                                                                                    |                                                                                                                                |    |   |
|                                                                                    |                                                                                                                                |    |   |
|                                                                                    |                                                                                                                                |    | ≡ |
| <                                                                                  |                                                                                                                                | >  |   |
|                                                                                    |                                                                                                                                |    |   |
| Field Name                                                                         | 4                                                                                                                              |    |   |
| Material_F                                                                         | ield                                                                                                                           |    |   |
|                                                                                    |                                                                                                                                |    |   |
| Tempera Strain (e Strain R Time (t) Frequen                                        | nition<br>pendent Variables<br>ature (T)<br>:)<br>ate (er)                                                                     |    |   |
| Active Inde<br>Tempera<br>Strain (e<br>Strain R<br>Time (t)<br>Frequen<br>Magnetil | nition<br>pendent Variables<br>ature (T)<br>e)<br>ate (er)<br>icy (f)                                                          |    |   |
| Active Inde<br>Tempera<br>Strain (e<br>Strain R<br>Time (t)<br>Frequen<br>Magnetil | nition<br>pendent Variables<br>ature (T)<br>a)<br>ate (er)<br>cy (f)<br>s Induction (B)                                        |    |   |
| Active Inde<br>Tempera<br>Strain (e<br>Strain R<br>Time (t)<br>Frequen<br>Magnetil | nition<br>pendent Variables<br>ature (T)<br>e)<br>ate (er)<br>cy (f)<br>c Induction (B)<br>c Field Intensity (H)               |    |   |
| Active Inde<br>Tempera<br>Strain (e<br>Strain R<br>Time (t)<br>Frequen<br>Magnetil | nition<br>pendent Variables<br>ature (T)<br>e)<br>ate (er)<br>cy (f)<br>c Induction (B)<br>c Field Intensity (H)<br>Input Data |    |   |
| Active Inde<br>Tempera<br>Strain (e<br>Strain R<br>Time (t)<br>Frequen<br>Magnetil | nition<br>pendent Variables<br>ature (T)<br>e)<br>ate (er)<br>cy (f)<br>c Induction (B)<br>c Field Intensity (H)<br>Input Data |    |   |

# CASE STUDY 7, MATERIAL PROPERTY FIELD

- In [Options] the Extrapolation Option chosen does not affect the field evaluation for the Nastran preference. Nastran will do a linear interpolation between adjacent (strain, stress) points.
- The number of rows and columns can be specified, but for this case, 30 is sufficient.

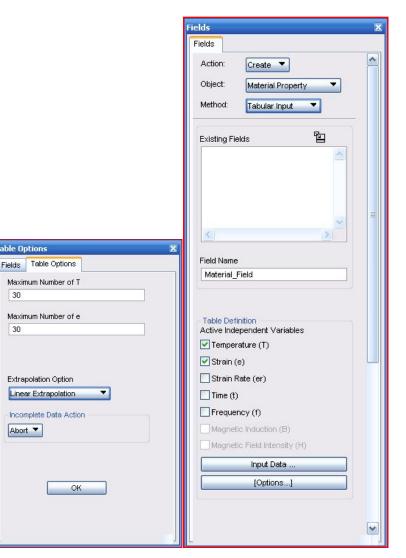
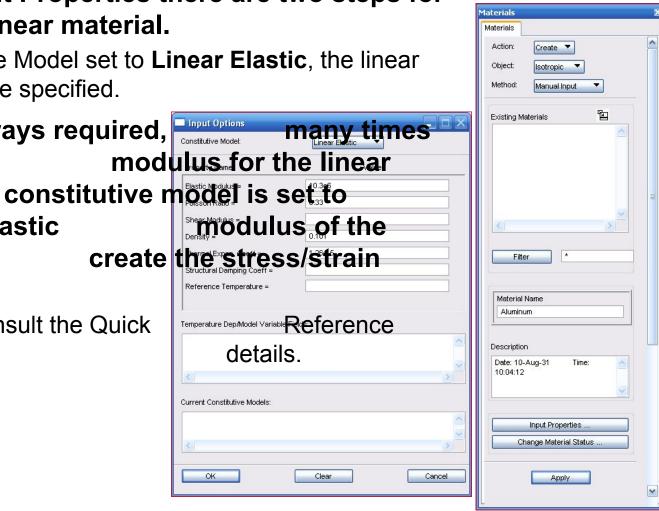



Table Options


30

30

Abort 🔻

# CASE STUDY 7, CREATE MATERIAL USING FIELD

- In Materials, Input Properties there are two steps for making the nonlinear material.
  - With Constitutive Model set to Linear Elastic, the linear properties can be specified.
- Although not always required, Constitutive Model: the elastic elastic match the first elastic data used to field.
  - For Nastran, consult the Quick Guide for more



# CASE STUDY 7, CREATE MATERIAL USING FIELD


 Set the Constitutive Model to Nonlinear Elastic, and select the previously created field from the Strain and Strain/TEMP Dependent Fields, Material\_Field for the nonlinear properties of Aluminum.

| Constitutive Model:         | Nonlinear Elastic 🛛 🔻 | ]  |
|-----------------------------|-----------------------|----|
| Property Name               | Value                 |    |
| Stress/Strain Curve =       | Material_Field        |    |
|                             |                       | 8  |
| Strain and Strain/Temp Dep  | endent Fields:        |    |
|                             |                       |    |
| Material Field              |                       |    |
| Material_Field              |                       |    |
|                             |                       |    |
| Material_Field              |                       |    |
| <u>&lt;</u>                 |                       | .> |
| <u>&lt;</u>                 |                       | >  |
| <u>&lt;</u>                 |                       |    |
|                             |                       |    |
| Current Constitutive Models |                       | >  |

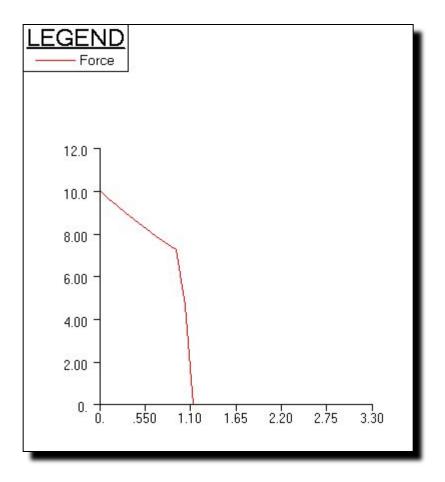
| laterials   |                                        | 1 |
|-------------|----------------------------------------|---|
| Materials   |                                        |   |
| Action:     | Create 💌                               | ^ |
| Object:     | Isotropic 🔻                            |   |
| Method:     | Manual Input                           |   |
| Existing M  | aterials 🖺                             |   |
|             |                                        |   |
|             |                                        | = |
| 1           | ×                                      |   |
| 151         |                                        |   |
| Filte       | er *                                   |   |
|             |                                        |   |
| Material    | Name                                   | 1 |
| Aluminu     | m                                      |   |
| Deservittie |                                        |   |
| Descriptio  | n<br>-Aug-31 Time: 🔼                   | 1 |
| 10:04:12    |                                        |   |
|             | ~                                      |   |
|             | <u>×</u>                               |   |
|             | Input Properties                       |   |
|             | Input Properties nange Material Status |   |
| a           |                                        |   |

#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

- Non Spatial, Real fields are used to create time or frequency dependent fields for transient or frequency response analysis.
- Non Spatial, Complex fields are used primarily for frequency response analysis.



- Create non-spatial field
  - Real
  - Time
  - Map Function to Table
  - PCL Expression f(time)


| Fields 🔀                                                                                                                                                     | 🗖 Non Spatial Scalar Table Data 📃 🗖 🗙   | Map Function to Table 🛛 🛛 🔀                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|
| Fields       Action:     Create ▼       Object:     Non Spatial ▼       Method:     Tabular Input ▼                                                          | Input Data Auto Highlight Import/Export | Fields     Map Function to Table       PCL Expression f(*)       10*exp(-0.35*t)                         |
| Existing Fields                                                                                                                                              | t     Value       t-1                   | Use Existing Time Pts.<br>Start Time<br>0.0<br>End Time<br>1.0<br>Number of Points<br>28<br>Apply Cancel |
| Active Independent Variables<br>(Linit = 3)<br>Time (t)<br>Frequency (f)<br>Displacement (u)<br>Velocity (v)<br>User-Defined (UD)<br>Input Data<br>[Options] | Map Function to Table OK Undo           |                                                                                                          |
| -Apply-                                                                                                                                                      |                                         |                                                                                                          |

Edit the columns to include two additional points (Time, Value)

|      | t              | Value          |    |
|------|----------------|----------------|----|
| t-23 | 8.1481469E-001 | 7.5187502E+000 | 1  |
| t-24 | 8.5185170E-001 | 7.4219141E+000 | 1  |
| t-25 | 8.8888872E-001 | 7.3263254E+000 | 1  |
| t-26 | 9.2592573E-001 | 7.2319674E+000 | 1  |
| t-27 | 9.6296275E-001 | 7.1388245E+000 | 1  |
| t-28 | 9.9999976E-001 | 7.0468812E+000 | 16 |
| t-29 | 1.1000000E+000 | 0.0000000E+000 | 1  |
| t-30 | 3.0000000E+000 | 0.0000000E+000 |    |

| Fields 🛛 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specify Range                                     |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------|
| Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Specify Kange                                   |               |
| Action: Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Use Existing Points<br>Independent Variable Range |               |
| Select Field To Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum Maximum                                   | No. of Points |
| Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 0.0 3.0                                         | 30            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |               |
| Select Independent Variable           Image: state st | ОК                                                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |               |
| ▼ Post XY Plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |               |
| Unpost Current XYWindow Delete All Curves Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |               |

PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation



PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation

#### PAT302, Section 8, June 2012 Copyright© 2012 MSC.Software Corporation