Examples of Traffic

Video

- Video Traffic (High Definition)
 - 30 frames per second
 - Frame format: 1920x1080 pixels
 - 24 bits per pixel
- Required rate: 1.5 Gbps
- Required storage: 1 TB per hour
- Video uses compression algorithm to reduce bitrate

MPEG compression

I frames: intra-coded

P frames: predictive

B frames: bi-directional

• Group of Pictures (GOP): IBBPBBPBB

Example: Harry Potter

30 minutes of Harry Potter movie with HD encoding

- Codec: H.264 SVC
- Resolution: 1920x1088
- Frames per second: 24 fps
- GOP: IBBBPBBBPBBBPBBB
- Frame size (Bytes):
 - Avgerage: 28,534
 - Minimum: 109
 - Maximum: 287,576
- Mean Frame Bit Rate (Mbps): 5.48
- Peak Frame Bit Rate (Mbps): 55.21

Harry Potter: 30 minutes

Harry Potter: 20 seconds

Harry Potter

Voice

- Standard (Pulse Code Modulation) voice encoding:
 - 8000 samples per second (8 kHz)
 - 8 bits per sample
 - ☐ Bit rate: 64 kbps
- Better quality with higher sampling rate and larger samples
- CD encoding:
 - 44 kHz sampling rate
 - 16 bits per sample
 - 2 channels
 - ☐ Bit rate: 1.4 Mbps
- Packet voice collects multiple samples in once packet
- Modern voice encoding schemes also use compression and silent suppression

Skype Voice Call: 6 minutes

SVOPC encoding, one direction of 2-way call

Skype Voice Call: 2 seconds

Skype (UDP traffic only)

Internet Traffic: 10 Gbps link

- Data measured from a backbone link of a Tier-1 Internet Service provider
 - Link measured: Chicago Seattle
 - Link rate: 10 Gbps (10 Gigabit Ethernet)
- Data measures total (aggregate) traffic of all transmissions on the network
- Data shown is 1 second:
 - ~430,000 packets packet transmissions
 - Average rate: ~3 Gbps
 - Avg. packet size: 868 Bytes
 - Min. packet size: 44 Bytes
 - Max. packet size: 1504 Bytes

Internet Traffic: 10 Gbps link

One data point is the traffic in one millisecond

Internet Traffic

Packet arrivals in a 2µs snapshot:

Internet Traffic: 10 Gbps link

Distribution of packet sizes

Distribution of time gap between packets

Data Traffic: "Bellcore Traces"

- Data measured on an Ethernet network at Bellcore Labs with 10Mbps
- Data measures total (aggregate) traffic of all transmissions on the network
- Measurements from 1989
- One of the first systematic analyses of network measurements

Data Traffic: 100 seconds

One data point is the traffic in 100 milliseconds

Packet arrivals: 200 milliseconds

Bellcore traces

Distribution of packet sizes

Distribution of time gap between packets

Some background on Lab 1

Lab 1

 Lab 1 is about comparing a simple model for network traffic (Poisson traffic) with actual network traffic (LAN traffic, video traffic)

 Lab 1 retraces one fo the most fundamental insights of networking research ever:

"Typical network traffic is not well described by Poisson model"

Poisson

• In a **Poisson process** with rate λ , the number of events in a time interval $(t, t+\tau]$, denoted by $N(t+\tau) - N(t)$, is given by

$$P[N(t+\tau)-N(t)=k] = \frac{(\lambda \tau)^k}{k!} e^{-\lambda \tau}$$
 , $k = 0, 1, ...,$

• In a Poisson process with rate λ , the time between events follows an **exponential distribution**:

$$P[$$
Time between two events $\leq X] = 1 - e^{-\lambda X}$

In the Past...

- Before there were packet networks there was the circuit-switched telephone network
- Traffic modeling of telephone networks was the basis for initial network models
 - Assumed Poisson arrival process of new calls
 - Assumed Poisson call duration

... until early 1990's

- Traffic modeling of packet networks also used Poisson
 - Assumed Poisson arrival process for packets
 - Assumed Exponential distribution for traffic

The measurement study that changed everything

- Bellcore Traces: In 1989, researchers at (Leland and Wilson) begin taking high resolution traffic traces at Bellcore
 - Ethernet traffic from a large research lab
 - 100 μ sec time stamps
 - Packet length, status, 60 bytes of data
 - Mostly IP traffic (a little NFS)
 - Four data sets over three year period
 - Over 100 million packets in traces
 - Traces considered representative of normal use

The data in part 3 of Lab 1 is a subset of the actual measurements.

Source: Prof. C. Williamson ECE 466

Extract from abstract

Results were published in 1993

"On the Self-Similar Nature of Ethernet Traffic"
Will E. Leland, Walter Willinger, Daniel V. Wilson, Murad
S. Taqqu

"We demonstrate that Ethernet local area network (LAN) traffic is statistically self-similar, that none of the commonly used traffic models is able to capture this fractal behavior, that such behavior has serious implications for the design, control, and analysis of high-speed..."

That Changed Everything.....

Fractals

Source: Prof. P. Barford, U. Wisconsin

(b) Non-Self-Similar Process

Traffic at different time scales (Bellcore traces)

What is the observation?

- A Poisson process
 - When observed on a fine time scale will appear bursty
 - When aggregated on a coarse time scale will flatten (smooth) to white noise
- A Self-Similar (fractal) process
 - When aggregated over wide range of time scales will maintain its bursty characteristic

Source: Prof. C. Williamson ECE 466

Why do we care?

- For traffic with the same average, the probability of a buffer overflow of self-similar traffic is much higher than with Poisson traffic
 - Costs of buffers (memory) are 1/3 the cost of a high-speed router!
- When aggregating traffic from multiple sources, self-similar traffic becomes burstier, while Poisson traffic becomes smoother

Self-similarity

- The objective in Lab 1 is to <u>observe</u> self-similarity and obtain a sense.
- The challenge of Lab 1:
 - The Bellcore trace for Part 4 contains 1,000,000 packets
 - The computers in the lab are not happy with that many packets
 - Reducing the number of packets in plots, may reduce opportunities to discover self-similarity effect