

In many situations one is not interested in the internal organization of a network. A description relating input and output variables may be sufficient

A two-port model is a description of a network that relates voltages and currents

LEARNING

GOALS

Study the basic types of two-port models Admittance parameters Impedance parameters Hybrid parameters Transmission

Understand how to convert one model into another

The network contains NO independent

The admittance parameters describe the currents in terms of the

 $I_1 = y_{11}V_1 + y_{12}V_2$

 y_{21} determines the current flowing into port 2 when the $I_2 = y_{21}V_1 + y_{22}V_2$ port is short - circuited and a voltage is applied to port 1

The first subindex identifies the output port. The second the input port.

The computation of the parameters follows directly from the definition

$$\begin{aligned} \mathbf{y}_{11} &= \frac{\mathbf{I}_1}{\mathbf{V}_1} \Big|_{\mathbf{V}_2 = 0} \qquad \mathbf{y}_{12} = \frac{\mathbf{I}_1}{\mathbf{V}_2} \Big|_{\mathbf{V}_1 = 0} \\ \mathbf{y}_{21} &= \frac{\mathbf{I}_2}{\mathbf{V}_1} \Big|_{\mathbf{V}_2 = 0} \qquad \mathbf{y}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big|_{\mathbf{V}_1 = 0} \end{aligned}$$

Circuit used to determine y_{11}, y_{21}

 $I_{2} = \left(\frac{1}{2} + \frac{1}{3}\right)V_{2} \Rightarrow y_{22} = \frac{5}{6}[S]$ $-I_{1} = \frac{3}{2+3}I_{2} = \frac{3\times5}{5\times6}V_{2} \Rightarrow y_{12} = \frac{1}{2}[S]$

Next we show one use of this model

The model plus the conditions at the

ports are sufficient to determine the

other variables

$$2^{1} 2^{1} 2^{2}$$

 $0 = -\frac{1}{2}V_{1} + \left(\frac{5}{6} + \frac{1}{4}\right)V_{2}$

$$V_{1} = \frac{13}{6}V_{2}$$
$$V_{2} = \frac{8}{11}[V]$$
$$I_{2} = -\frac{2}{11}[A$$

The '*z parameters*' can be derived in a manner similar to the Y parameters

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0} \qquad z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$$
$$z_{12} = \frac{V_1}{I_2}\Big|_{I_1=0} \qquad z_{22} = \frac{V_2}{I_2}\Big|_{I_1=0}$$

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$

$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

$$z_{11} = \frac{V_{1}}{I_{1}}\Big|_{I_{2}=0}$$

$$z_{21} = \frac{V_{2}}{I_{1}}\Big|_{I_{2}=0}$$

$$z_{12} = \frac{V_1}{I_2}\Big|_{I_1=0}$$
 $z_{22} = \frac{V_2}{I_2}\Big|_{I_1=0}$

Write the loop equations $V_1 = 2I_1 - j4(I_1 + I_2)$ $V_2 = j2I_2 - j4(I_2 + I_1)$

rearrangin

g

$$V_1 = (2 - j4)I_1 - j4I_2 \implies z_{11} = 2 - j4\Omega \qquad z_{12} = -j4\Omega$$

 $V_2 = -j4I_1 - j2I_2 \qquad z_{21} = -j4\Omega \qquad z_{22} = -j2\Omega$

 $\begin{aligned} \mathbf{h}_{11} &= \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0} & \mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0} & \mathbf{h}_{11} = \text{short -circuit input impedance} \\ \mathbf{h}_{12} &= \frac{\mathbf{V}_1}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0} & \mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0} & \mathbf{h}_{21} = \text{short -circuit forward current gain} \\ \mathbf{h}_{22} &= \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0} & \mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0} & \mathbf{h}_{22} = \text{open -circuit output admittance} \end{aligned}$

These parameters are very common in modeling transistors

Find the hybrid parameters for the network

$$\boldsymbol{I}_2 = -\frac{6}{3+6}\boldsymbol{I}_1 \Longrightarrow \boldsymbol{h}_{21} = -\frac{2}{3}$$

A = open circuit voltage ratio $B = -\frac{V_1}{I_2}\Big|_{V_2=0}$ B = negative short - circuit transfer imperiate $<math display="block">B = -\frac{V_1}{I_2}\Big|_{V_2=0}$ $D = -\frac{I_1}{I_2}\Big|_{V_2=0}$ D = negative short - circuit current ratioB = negative short - circuit transfer impedance

Determine the transmission parameters

when $I_2 = 0$

LEARNING

EXAMPLE

$$V_2 = \frac{\overline{j\omega}}{1 + \frac{1}{j\omega}} V_1 \Longrightarrow A = 1 + j\omega$$

$$V_2 = \frac{1}{j\omega} I_1 \Longrightarrow \frac{I_1}{V_2} = j\omega$$

when
$$V_2 = 0$$

 $I_2 = -\frac{\frac{1}{j\omega}}{1 + \frac{1}{j\omega}}I_1 = -\frac{1}{1 + j\omega}I_1 \implies D = 1 + j\omega$
 $V_1 = \left[1 + (1 \parallel \frac{1}{j\omega})\right]I_1 = \left[\frac{2 + j\omega}{1 + j\omega}\right][-(1 + j\omega)]I_2$
 $B = 2 + j\omega$

PARAMETER CONVERSIONS

If all parameters exist, they can be related by conventional algebraic manipulations.

As an example consider the relationship between Z and Y parameters

$$V_{1} = z_{11}T_{1} + z_{12}T_{2}$$

$$V_{2} = z_{21}T_{1} + z_{22}T_{2}$$

$$\begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix} \Rightarrow \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}^{-1} \begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix}$$

$$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}^{-1} = \frac{1}{\Delta_{Z}} \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix}$$

with $\Delta_{\boldsymbol{Z}} = \boldsymbol{z}_{11} \boldsymbol{z}_{22} - \boldsymbol{z}_{21} \boldsymbol{z}_{12}$

In the following conversion table, the symbol Δ stands for the determinant of the corresponding matrix

$$\Delta_{Z} = \begin{vmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{vmatrix}, \ \Delta_{Y} = \begin{vmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{vmatrix}, \ \Delta_{H} = \begin{vmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{vmatrix}, \ \Delta_{T} = \begin{vmatrix} A & B \\ C & D \end{vmatrix}$$

TABLE 16.1 Two-port parameter conversion formulas

$$\begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \frac{\mathbf{y}_{22}}{\Delta_{Y}} & -\frac{\mathbf{y}_{12}}{\Delta_{Y}} \\ -\frac{\mathbf{y}_{21}}{\Delta_{Y}} & \mathbf{y}_{11} \\ \frac{\mathbf{y}_{21}}{\Delta_{Y}} & \frac{\mathbf{y}_{11}}{\Delta_{Y}} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{A} & \Delta_{T} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{1} & \mathbf{D} \\ \mathbf{C} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \frac{\mathbf{A}_{H}}{\mathbf{h}_{22}} & \frac{\mathbf{h}_{12}}{\mathbf{h}_{22}} \\ -\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}} & \mathbf{1} \\ \frac{\mathbf{h}_{22}}{\mathbf{h}_{22}} & \frac{\mathbf{h}_{22}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \mathbf{z}_{22} & -\mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{21} \\ \frac{\mathbf{z}_{21}}{\Delta_{Z}} & \frac{\mathbf{z}_{21}}{\Delta_{Z}} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{D} & -\Delta_{T} \\ \mathbf{B} & \mathbf{B} \\ -\frac{\mathbf{1}}{\mathbf{B}} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \frac{1}{\mathbf{h}_{11}} & \frac{\mathbf{h}_{12}}{\mathbf{h}_{11}} \\ \frac{\mathbf{h}_{21}}{\mathbf{h}_{11}} & \frac{\mathbf{h}_{11}}{\mathbf{h}_{11}} \\ \frac{\mathbf{h}_{21}}{\mathbf{h}_{11}} & \frac{\mathbf{h}_{11}}{\mathbf{h}_{11}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \mathbf{z}_{11} & \frac{\mathbf{A}_{H}}{\mathbf{h}_{11}} & \frac{\mathbf{h}_{12}}{\mathbf{h}_{11}} \\ \frac{\mathbf{h}_{21}}{\mathbf{h}_{21}} & \frac{\mathbf{h}_{22}}{\mathbf{h}_{22}} \\ \frac{\mathbf{h}_{22}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \mathbf{z}_{11} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \mathbf{A}_{Z} & \mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \mathbf{A}_{Z} & \mathbf{A}_{Z}} \\ \mathbf{A}_{Z} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \mathbf{A}_{Z} & \mathbf{A}_{Z}} \\ \mathbf{A}_{Z} & \mathbf{A}_{Z}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{22}} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \mathbf{A}_{Z} & \mathbf{A}_{Z}} \\ \mathbf{A}_{Z} & \mathbf{A}_{Z}} \\ \frac{\mathbf{A}_{Z}}{\mathbf{h}_{2}} & \frac{\mathbf{A}_{Z}}{\mathbf{h}_{2}} \end{bmatrix}$$

INTERCONNECTION OF

Interconnections permit the description of complex systems in terms of simpler

The basic interconnections to be considered are: *parallel, series* and cascade

acts as input for the

Parallel Interconnection: Description Using Y

Series interconnection using Z

SERIES: Currents are the same. Voltage of interconnection is the sum

of voltages Description of each subsystem

$$V_a = Z_a I_a, \quad V_b = Z_b I_b$$

$$Z = Z_a + Z_b$$

$$I_a = I_b = I$$

$$V = Z_a I + Z_b I = (Z_a + Z_b)I$$

$$V = V_a + V_b$$

Cascade connection using transmission parameters

Interconnection constraints:

 $\boldsymbol{I}_{2a} = -\boldsymbol{I}_{1b} \qquad \boldsymbol{V}_{2a} = \boldsymbol{V}_{1b}$ $V_1 = V_{1a} \qquad V_2 = V_{2b}$ $\boldsymbol{I}_1 = \boldsymbol{I}_{1a} \qquad \boldsymbol{I}_2 = \boldsymbol{I}_{2b}$ $= \begin{bmatrix} A_a & B_a \\ C_a & D_a \end{bmatrix} \begin{bmatrix} V_{2a} \\ -I_{2a} \end{bmatrix}$ V_{1a} $\begin{vmatrix} V_{1b} \\ I_{1h} \end{vmatrix} = \begin{vmatrix} A_b & B_b \\ C_h & D_b \end{vmatrix} \begin{vmatrix} V_{2b} \\ -I_{2h} \end{vmatrix}$

CASCADE: Output of first subsystem acts as input for the second

$$V_{1} = AV_{2} - BI_{2}$$
$$I_{1} = CV_{2} - DI_{2}$$
$$\begin{bmatrix} V_{1} \\ I_{1} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_{2} \\ -I_{2} \end{bmatrix}$$

Matrix multiplication does not commute.

Order of the interconnection is

$$\begin{bmatrix} B_a \\ B_a \end{bmatrix} \begin{bmatrix} A_b & B_b \\ C_b & D_b \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

LEARNING

Use direct method, or given the Y parameters transform to Z

... or decompose the network in a

series connection of simpler networks 3-2j 3-2j

$$\frac{2}{3-2j} \left[\frac{2-4j}{3-2j} \right] Z = Z_a + Z_b = \begin{bmatrix} \frac{5-4j}{3-2j} & \frac{5-2j}{3-2j} \\ \frac{5-2j}{3-2j} & \frac{5-2j}{3-2j} \\ \frac{5-2j}{3-2j} & \frac{5-6j}{3-2j} \\ \frac{5-2j}{3-2j} & \frac{5-6j}{3-2j} \end{bmatrix}$$

By splitting the 2-Ohm resistor, the network can be viewed as the cascade connection of two identical

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1+j\omega & 2+j\omega \\ j\omega & 1+j\omega \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} 1+j\omega & 2+j\omega \\ j\omega & 1+j\omega \end{bmatrix} \begin{bmatrix} 1+j\omega & 2+j\omega \\ j\omega & 1+j\omega \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} (1+j\omega)^2 + (2+j\omega)j\omega & (1+j\omega)(2+j\omega) + (2+j\omega)(1+j\omega) \\ j\omega(1+j\omega) + (1+j\omega)(j\omega) & j\omega(2+j\omega) + (1+j\omega)^2 \end{bmatrix}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1+4j\omega-2\omega^2 & 4+6j\omega-2\omega^2 \\ 2j\omega-2\omega^2 & 1+4j\omega-2\omega^2 \end{bmatrix}$$