Chapter Six

Demand

Properties of Demand Functions

 Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands
x₁*(p₁,p₂,y) and x₂*(p₁,p₂,y) change as prices p₁, p₂ and income y change.

- How does x₁*(p₁,p₂,y) change as p₁ changes, holding p₂ and y constant?
- Suppose only p₁ increases, from p₁' to p₁" and then to p₁".

- The curve containing all the utility-maximizing bundles traced out as p₁ changes, with p₂ and y constant, is the p₁-price offer curve.
- The plot of the x₁-coordinate of the p₁- price offer curve against p₁ is the ordinary demand curve for commodity 1.

 What does a p₁ price-offer curve look like for Cobb-Douglas preferences?

 What does a p₁ price-offer curve look like for Cobb-Douglas preferences?
Take

Then the ordinary demand functions for commodities 1 and 2 are

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat

and

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat and the ordinary demand curve for commodity 1 is a

and

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat and the ordinary demand curve for commodity 1 is a rectangular hyperbola.

 What does a p₁ price-offer curve look like for a perfect-complements utility function?

 What does a p₁ price-offer curve look like for a perfect-complements utility function?

Then the ordinary demand functions for commodities 1 and 2 are

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As

X₁

 What does a p₁ price-offer curve look like for a perfect-substitutes utility function?

Then the ordinary demand functions for commodities 1 and 2 are

and

- Usually we ask "Given the price for commodity 1 what is the quantity demanded of commodity 1?"
- But we could also ask the inverse question "At what price for commodity 1 would a given quantity of commodity 1 be demanded?"

 p_1 Given p_1 ', what quantity is demanded of commodity 1? Answer: x_1 ' units.

01

Given p₁', what quantity is demanded of commodity 1? Answer: x_1 ' units. The inverse question is: Given x₁' units are demanded, what is the price of x₁* commodity 1?

Given p₁', what quantity is demanded of commodity 1? Answer: x_1 ' units. The inverse question is: Given x₁' units are demanded, what is the price of x₁* commodity 1? Answer: p₁'

 Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity.

- Inverse demand function
- At optimal choice
- $|\mathsf{MRS}| = \mathsf{p}_1/\mathsf{p}_2$
- Therefore:
- $p_1 = p_2 |MRS|$
- If $p_2 = 1$, then inverse demand function simply measures MRS, i.e. how much of a good 2 consumer would want to have to compensate for a small reduction in amount of good 1.

Inverse demand function

If good 2 is money, then MRS (and inverse demand function) measure marginal willingness to pay.

A Cobb-Douglas example:

is the ordinary demand function and

is the inverse demand function.

A perfect-complements example:

is the ordinary demand function and

is the inverse demand function.

Income Changes

 How does the value of x₁*(p₁,p₂,y) change as y changes, holding both p₁ and p₂ constant?

Income Changes

• A plot of quantity demanded against income is called an Engel curve.

Income Changes and Cobb-Douglas Preferences

 An example of computing the equations of Engel curves; the Cobb-Douglas case.

The ordinary demand equations are

Income Changes and Cobb-Douglas Preferences

Rearranged to isolate y, these are:

Engel curve for good 1

Engel curve for good 2
Income Changes and Cobb-Douglas Preferences

Perfectly-Complementary Preferences

 Another example of computing the equations of Engel curves; the perfectly-complementary case.

The ordinary demand equations are

Perfectly-Complementary Preferences

Rearranged to isolate y, these are:

Engel curve for good 1

Engel curve for good 2

Perfectly-Substitutable Preferences

 Another example of computing the equations of Engel curves; the perfectly-substitution case.

The ordinary demand equations are

Suppose $p_1 < p_2$. Then

Suppose $p_1 < p_2$. Then and

Suppose $p_1 < p_2$. Then and

and $\chi_2 = 4$

Income Changes

- In every example so far the Engel curves have all been straight lines?
 Q: Is this true in general?
- A: No. Engel curves are straight lines if the consumer's preferences are homothetic.

Homotheticity

 A consumer's preferences are homothetic if and only if

$$(x_1,x_2) p (y_1,y_2) \Leftrightarrow (kx_1,kx_2) p$$

 (ky_1,ky_2)
for every k > 0.

• That is, the consumer's MRS is the same anywhere on a straight line drawn from the origin.

Income Effects -- A Nonhomothetic Example

 Quasilinear preferences are not homothetic.

• For example,

Income Effects

- A good for which quantity demanded rises with income is called normal.
- Therefore a normal good's Engel curve is positively sloped.

Income Effects

- A good for which quantity demanded falls as income increases is called income inferior.
- Therefore an income inferior good's Engel curve is negatively sloped.

Income Effects

- In the US over last hundred years income increased many times whereas the number of kids per household went down.
- Are children an inferior good?

Income offer curve

Ordinary Goods

 A good is called ordinary if the quantity demanded of it always increases as its own price decreases.

Ordinary Goods Fixed p₂ and y. **X**₂

X

Giffen Goods

 If, for some values of its own price, the quantity demanded of a good rises as its own-price increases then the good is called Giffen.

X _1

If an increase in p₂

 increases demand for commodity 1
 then commodity 1 is a gross
 substitute for commodity 2.
 reduces demand for commodity 1
 then commodity 1 is a gross

complement for commodity 2.

A perfect-complements example:

SO

Therefore commodity 2 is a gross complement for commodity 1.

A Cobb- Douglas example:

A Cobb- Douglas example:

SO

Therefore commodity 1 is neither a gross complement nor a gross substitute for commodity 2.