
CHAPTER 18: ELECTRICAL PROPERTIES

ISSUES TO ADDRESS...

- How are electrical conductance and resistance
- What after by sical phenomena that distinguish
- FONMETARS, NORMIC CONCLETE AND A PRINT OF THE PROPERTY OF TH
- Fire effections of the formation of the second of the se
 - by impurities (doping) and T?

VIEW OF AN INTEGRATED CIRCUIT

Scanning electron microscope images of an

• A dot map showing location of Si (a semiconductor):

--Si shows up as light regions.

• A dot map showing location of Al (a conductor):

--Al shows up as light regions.

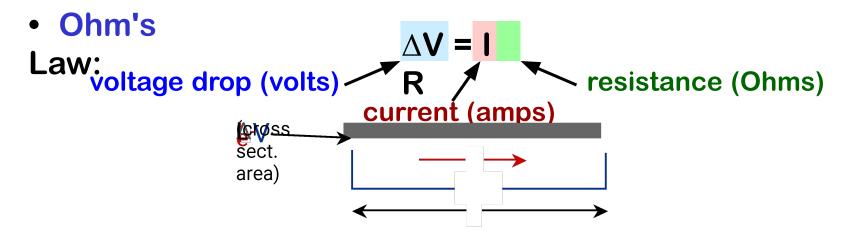

Fig. (d) from Fig. 18.25, *Callister 6e*. (Fig. 18.25 is courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

Fig. (a), (b), (c) from Fig. 18.0, *Callister 6e.*

ELECTRICAL CONDUCTION

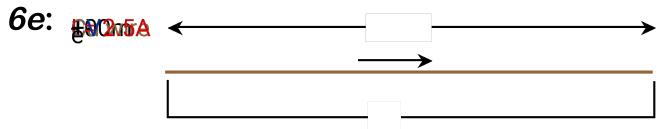
Resistivity, ρ and Conductivity, σ:

-- geometry-independent forms of Ohm's

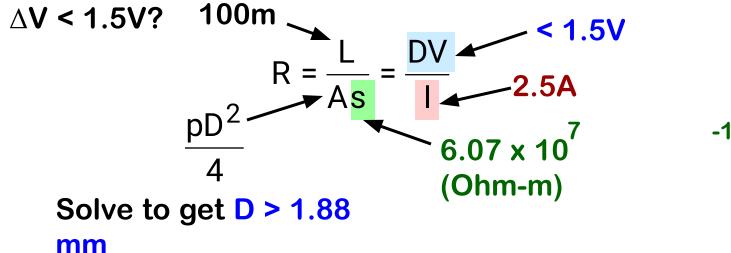
$$R = \frac{rL}{A} = \frac{L}{As}$$

CONDUCTIVITY: COMPARISON

Room T values


(Character to s

Be present the problem of $\frac{2100 \times 0000}{790^{-17}}$


Selected values from Tables 18.1, 18.2, and 18.3, Callister 6e.

EX: CONDUCTIVITY PROBLEM

• Question 18.2, p. 649, Callister

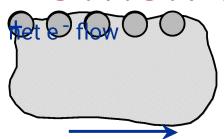
What is the minimum diameter (D) of the wire so that

CONDUCTION & ELECTRON TRANSPORT

- Metals:
- -- Thermal energy puts many electrons into a higher energy

state Energy

States:


-- the cases

below

for metals

show

that nearby energy states are accessible by thermal fluctuations.

ENERGY STATES: INSULATORS AND SEMICONDUCTORS

- Insulators:

 --Higher energy states
 no[†]
- Semiconductors:--Higher energy states

gal

METALS: RESISTIVITY VS T, IMPURITIES

- Imperfections increase resistivity
 - -- grain boundaries
 - --dislocations
 - --impurity atoms

These act to scatter electrons so that they take a less direct path.

- Resistivity increases
- with:
 - --temperature
 - --wt% impurity
 - --%CW
 - $r = r_{thermal}$
 - +r thermal
 - +r_{def}

Adapted from Fig. 18.8, *Callister 6e*. (Fig. 18.8 adapted from J.O. Linde, *Ann. Physik* 5, p. 219 (1932); and C.A. Wert and R.M. Thomson, *Physics of Solids*, 2nd ed., McGraw-Hill Book Company, New York, 1970.)

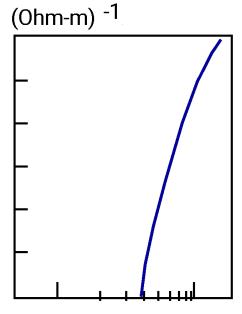
EX: ESTIMATING CONDUCTIVITY

On-Estimate the electrical conductivity of a Cu-Ni

Adapted from Fig. 7.14(b), *Callister 6e*.

$$r = 30x10^{-8} Ohm - m$$

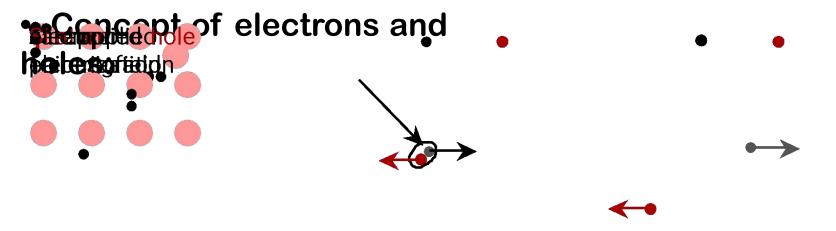
$$s = \frac{1}{r} = 3.3x10^6 (Ohm - m)^{-1}$$


Adapted from Fig. 18.9, *Callister 6e*.

PURE SEMICONDUCTORS: • Data for Pure Silicon: Sundoped μ e E_{gap} /kT

--σ increases with T

Deposited to inhetals


Adapted from Fig. 19.15, Callister 5e. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, Phys. Rev. 75, p. 865, 1949.)

electrons can cross gap at higher T

material	band gap (eV)
Si	1.11
Ge	0.67
GaP	2.25
CdS	2.40

Selected values from Table 18.2, Callister 6e. Chapter 18-

CONDUCTION IN TERMS OF ELECTRON AND HOLE MIGRATION

INTRINSIC VS EXTRINSIC CONDUCTION

Intrinsic: # electrons = # holes (n = p) • Expsesfor pure Si --n ≠ p --occurs when impurities are added with a different N-type Extrinsic: (n >> host (e.g. Sinsic: (p >> n) electrionfield $s = p e m_h$ s a nem

DOPED SEMICON: CONDUCTIVITY VS T

- Data for Doped Silicon:
 - --σ increases doping

to

- --reason: imperfection sites lower the activation energy
- produce mobile electrons.

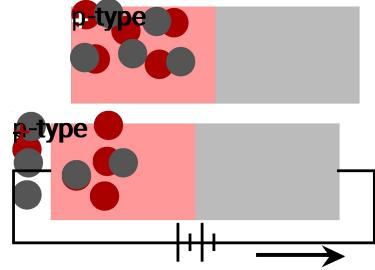
- Comparison: intrinsic vs extrinsic conduction...
 - --extrinsic doping level: 10²¹/m³ of a n-type donor impurity (such as P).
 - --for T < 100K: "freeze-out" thermal energy insufficient to excite electrons.
 - --for 150K < T < 450K: "extrinsic"
 - --for T >> 450K: "intrinsic"

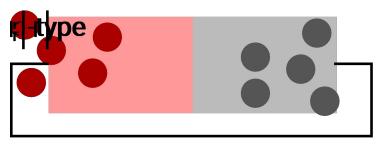
Adapted from Fig. 18.16, *Callister 6e*. (Fig. 18.16 from S.M. Sze, *Semiconductor Devices, Physics, and Technology*, Bell Telephone Laboratories, Inc., 1985.)

Adapted from Fig. 19.15, *Callister 5e.* (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, *Phys. Rev.* 75, p. 865, 1949.)

P-N RECTIFYING JUNCTION

• Allows flow of electrons in one direction only (e.g., useful to convert alternating current to direct current.


Processing: diffuse P into one side of a B-doped


crystal.

•--Results: --No applied potential:

-- Forward Wits: tall ter flow through p-type and n-type regions; holes and electrons recombine at p-n junction; current flows.

--Reverse bias: carrier flow away from p-n junction; carrier conc. greatly reduced at junction; little current flow.

SUMMARY

- Electrical conductivity and resistivity are:
 - --material parameters.
 - -- geometry independent.
- Electrical resistance is:
 - --a geometry and material dependent parameter.
- · Conductors, semiconductors, and insulators...
 - --different in whether there are accessible energy states for conductance electrons.
- For metals, conductivity is increased by
 - --reducing deformation
 - --reducing imperfections
 - --decreasing temperature.
- For pure semiconductors, conductivity is increased by
 - --increasing temperature
 - --doping (e.g., adding B to Si (p-type) or P to Si (n-type)

ANNOUNCEMENTS

Reading: Core **Problems:** Self-help **Problems:**