CHAPTER 18: ELECTRICAL PROPERTIES

ISSUES TO ADDRESS...

- How are electrical conductance and resistance
- Wharareefized?ysical phenomena that distinguish
- Fonductors, hormis conductors and insulators?
 by
- FURSENTIEURUACTors, 4 de Provinductivity affected

by impurities (doping) and T?

VIEW OF AN INTEGRATED CIRCUIT

Scanning electron microscope images of an

A dot map showing location of Si (a semiconductor):

--Si shows up as light regions.

• A dot map showing location of AI (a conductor):

--Al shows up as light regions.

Fig. (d) from Fig. 18.25, *Callister 6e*. (Fig. 18.25 is courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

Fig. (a), (b), (c) from Fig. 18.0, *Callister 6e*.

Chapter 18

ELECTRICAL CONDUCTION

Resistivity, ρ and Conductivity, σ:
 --geometry-independent forms of Ohm's

Law E: electric DV L = A resistivity (Ohm-m) intensity I: current density conductivity $s = \frac{1}{r}$ R = $\frac{rL}{A} = \frac{L}{As}$

CONDUCTIVITY: COMPARISON

-1

• Room T values

Bepresinvaluene @100 x 0100 790-17 (SearAnsinum oxide 0 x 0100 7 13

Selected values from Tables 18.1, 18.2, and 18.3, Callister 6e.

EX: CONDUCTIVITY PROBLEM

• Question 18.2, p. 649, Callister

What is the minimum diameter (D) of the wire so that

CONDUCTION & ELECTRON TRANSPORT

- Metals:
- -- Thermal energy puts many electrons into a higher energy state. • Energy States: -- the cases
- below
 - for metals
- show
 - that nearby energy states are accessible by thermal fluctuations.

ENERGY STATES: INSULATORS AND SEMICONDUCTORS

- Insulators:

 -Higher energy states
 no[†]
- Semiconductors:
 --Higher energy states

gal

METALS: RESISTIVITY VS T, IMPURITIES

- Imperfections increase
 resistivity
 - --grain boundaries
 - --dislocations
 - --impurity atoms

These act to scatter electrons so that they take a less direct path.

> Resistivity increases with:
>
> -temperature
> -wt% impurity
> -%CW
> r = r thermal
> +r thermal

Adapted from Fig. 18.8, *Callister 6e*. (Fig. 18.8 adapted from J.O. Linde, *Ann. Physik* 5, p. 219 (1932); and C.A. Wert and R.M. Thomson, *Physics of Solids*, 2nd ed., McGraw-Hill Book Company, New York, 1970.)

+r def

Chapter 18

EX: ESTIMATING CONDUCTIVITY

•

Outestimate the electrical conductivity of a Cu-Ni

Chapter 1

Adapted from Fig. 19.15, *Callister 5e.* (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, *Phys. Rev.* 75, p. 865, 1949.)

material	band g	ap (eV)
Si	1.11	
Ge	0.67	
GaP	2.25	
CdS	2.40	
Selected values from		Chapter 18-

Table 18.2, *Callister 6e*.

CONDUCTION IN TERMS OF ELECTRON AND HOLE MIGRATION

INTRINSIC VS EXTRINSIC CONDUCTION

• Intrinsic:

```
# electrons = # holes (n =
```

p)

• Exase for pure Si

--n ≠ p

--occurs when impurities are added with a

different

```
• N-type Extrinsic: (m >> atoms)

p) • (p) • Extrinsic: (p >> n) • (e.e. Sinsic: (p => n) • (e.e. Sinsic: (p == n) • (e.
```


DOPED SEMICON: CONDUCTIVITY VS T

- Data for Doped Silicon:
 --σ increases doping
 - --reason: imperfection sites lower the activation energy

to

produce mobile electrons.

- Comparison: intrinsic vs extrinsic conduction...
 - --extrinsic doping level: 10²¹/m³ of a n-type donor impurity (such as P).
 - --for T < 100K: "freeze-out" thermal energy insufficient to excite electrons.
 - --for 150K < T < 450K: "extrinsic"
 - --for T >> 450K: "intrinsic"

Adapted from Fig. 18.16, *Callister 6e.* (Fig. 18.16 from S.M. Sze, *Semiconductor Devices, Physics, and Technology*, Bell Telephone Laboratories, Inc., 1985.)

Adapted from Fig. 19.15, *Callister 5e*. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, *Phys. Rev.* 75, p. 865, 1949.)

P-N RECTIFYING JUNCTION

- Allows flow of electrons in one direction only (e.g., useful to convert alternating current to direct current.
- Processing: diffuse P into one side of a B-doped crystal.
- •--Results: potential:
- --Forward Wites: t carrier flow through p-type and n-type regions; holes and electrons recombine at p-n junction; current flows.
- --Reverse bias: carrier flow away from p-n junction; carrier conc. greatly reduced

at junction; little current flow.

SUMMARY

- Electrical conductivity and resistivity are: --material parameters. --geometry independent.
- Electrical resistance is:
 --a geometry and material dependent parameter.
- Conductors, semiconductors, and insulators... --different in whether there are accessible energy states for conductance electrons.
- For metals, conductivity is increased by --reducing deformation
 --reducing imperfections
 - --decreasing temperature.
- For pure semiconductors, conductivity is increased by
 - --increasing temperature
 - --doping (e.g., adding B to Si (p-type) or P to Si (n-type)

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

