THE MINISTRY OF PUBLIC HEALTH OF UKRAINE ZAPOROZHYE STATE MEDICAL UNIVERSITY

Gene Expression Regulation

Fundamentals of Biochemistry of Hormones

Produced by Ass.professor Krisanova N.V., 2015

All the levels may be regulated:

Levels of regulation in bacterial gene expression

FIGURE 17.1 Gene Expression in Bacteria Can Be Regulated at Three Levels.

All the genes of DNA in prokaryotic cell are divided in types:

- House keeping genes (constitutive)
- Inducible (structural)
- Gene-regulators
- Gene-operators

Operon is composed from promoter sequence,

gene-operator, structural genes

The Lac-operon model investigated in E.coli

(proposed by F.Jacob and J. Monod, 1961)

Gene-regulator is far from operon sequences, it is keeper of information about sequence of amino acid residues in protein-repressor (P-R) molecule

Gene-operator is placed in operon between promoter and structural genes, it has affinity to protein- repressor

Lactose is inducer of transcription made on Lac-operon because of its ability to block activity of P-R and thus to induce mRNA linkage to the

CRP-cAMP enhancer influence

Low glucose

CRP – Catabolite gene Reactive Protein

cAMP – cyclic AMP

The higher Glucose or Glycerol levels in the intracellular space the lower levels of cAMP

High glucose

RNA polymerase can't bind

Structural genes
not transcribed

Different Genes are found in eukaryotic DNA

- House keeping genes
- Genes required during cellular differentiation
- Genes which get triggered as a response to some external factors
- Genes which get triggered during apoptosis

Points for Gene Expression in Eukaryotes

- -Synthesis of proteins is controlled right from the chromatin stage.
- -Expression of gene is controlled at many steps during the process of transcription and translation.

Two forms of chromatin:

- Euchromatin A lesser coiled transcriptionally active region which can be easily accessed by the RNA polymerases.
- •Heterochromatin A highly condensed transcriptionally inactive region. The genes in this region cannot be accessed by the RNA polymerases for active transcription.

Mechanisms which affect the chromatin structure and hence the expression of gene are:

- Acetylation of Histones : ↑ Acetylation
 ---- ↓ Condensation of DNA -----
- ↑ Transcription of genes in that region
- Methylation of histone H4 on R4

 (arginine residue at the 4th position) ->->
 opens the chromatin structure ->->
 leading to transcriptional activation

Mechanisms which affect the chromatin structure and hence the expression of gene are:

- Methylation of histone H3 on K4 and K79
 (lysine residues at the 4th and 79th position) ->-> opens the chromatin structure ->-> leading to transcriptional activation
- Methylation of histone H3 on K9 and K27 (lysine residues at the 9th and 27th position) ->-> condenses the chromatin structure ->-> leading to transcriptional inactivation

Ubiquitination

- Ubiquitination of H2A Transcriptional inactivation
- Ubiquitination of H2B Transcriptional activation

Methylation of DNA

- Target sites of methylation are The cytidine residues which exist as a dinucleotide, CG (written as CpG)
- ↑ methylated cytidine -- ↓Transcriptional activity

A. Prokaryotic promoter

TATA-box binding protein (TBP) is found in eukaryotic cells, and it is the component of the complex TFIID containing other several proteins (TBP-associated factors) and bound to the TATA box

TATA-box binding protein (TBP)

Enhancer-bending protein (EBP) changes the DNA single strand conformation to form special loop which promotes the stimulation and the increase of the rate of initiation phase of transcription.

Except EBP and TF, there is the group of mediator proteins to stimulate transcription process, too

Proteins-mediators can control the rate of transcription due to their ability to change conformation of their molecules

Proteins-mediators are in close relations with general transcription factors placed in the complex TFIID

Interaction of homodimeric leucine-zipper (A) and basic helix-loop-helix (B) proteins with DNA

(B)

Classification of hormones according chemical nature

INTERCELLULAR MECHANISM of COMMUNICATION

The receptor (R)
for
hydrophilic
hormones (H)
is located
in the cellular
membrane
of target cell

Lipophilic
hormones
(H) may be
linked to
cytoplasmic (R)
and
nuclear (R')
receptors

All of the steps below are subject to regulation:

- biosynthesis of the hormone
- storage, secretion of the hormone
- transport of the hormone to the target cell
- reception of the signal by the hormone receptor
- transmission and amplification of the signal, biochemical reaction in the target cell
- degradation and excretion of the hormone.

Types of signal transmission due to G-proteins

Epinephrine-Receptor complex

Inactive Gs protein is composed from three subunits: $\alpha,\,\beta,\,\gamma$.

Hormone-receptor complex can stimulate Gs - it means :

dissociation of Gs to dimmer and single α -subunit linked to GDP that is formed from GTP

Gsα-GDP
is named
active Gs
protein

Some factors influenced G-proteins

- **Cholera toxin** modifies α-subunit of Gs as the result
 - the block of hydrolysis of GTP to GDP and superstimulation of Adenylate cyclase
- Pertussis toxin (produced at whooping cough)
 modifies α-subunit of Gi to allow Adenylate
 cyclase to produce cAMP in excess levels

GAP function:

GTPase-Activating Proteins, or GAPs can bind to activated G-proteins and stimulate their GTPase activity, with the result of terminating the signaling event. GAPs are also known as regulator of G protein signaling proteins, or RGS proteins, and these proteins are crucial in controlling the activity of G proteins. GAP role is to turn the G protein activity off.

PDE PDE – Phosphodiesterase
Inhibitors: metyl xanthines

CAMP — AMP

cAMP-dependent protein kinase (PK) activation

Enzyme or protein phosphorylated by PK	Pathway catalyzed by the enzyme	
Glycogen Synthase	Glycogen synthesis	
Phosphorylase Kinase	Glycogen breakdown	
Pyruvate Kinase	Glycolysis	
Pyruvate Dehydrogensae	Pyruvate to acetyl-CoA	

Triacylglycerol

breakdown

Formation of DOPA,

dopamine,

norepinephrine

Hormone-sensitive

Lipase

Tyrosine Hydroxylase

Calmodulin-4Ca 2+ complex

Ca²⁺

Examples of different signals, receptors, G

like-subunits, second messenger changes, and affected intracellular enzymes				
a n a l	Vasopressin	Epinephrine	Light	

G

β-adrenergic

Adenylate

cyclase

↑cAMP

↑ PK-A

Rhodopsin

Transducin

Phosphodi-e

sterase

↓ cGMP

perm.

↓ Ca²⁺, Na⁺

Signal

receptor

G_n like-

subunit

coupled

enzyme

protein

affected

Secondary

me-ssenger

VR

G

Adenylate

cyclase

↓cAMP

J PK-A

Complex of human growth hormone and its receptor. Two identical molecules of the receptor extracellular domain (blue and green ribbon models) bind a single molecule of growth hormone (red).

X-ray structure by and drawing courtesy of Abraham de Vos and Anthony Kossiakoff, Genentech Inc., South San Francisco, California.

Guanylin and ANF endotoxin receptor receptors Extracellular ligandbinding (receptor) domains Intracellular catalytic (cGMP-Hemeforming) domains COO-COO-Soluble NOactivated Membrane-spanning guanylyl cyclases guanylyl cyclase

Guanylate cyclases

Left: ANF –Atrial
Natriuretic Factor
Mechanism of action

Structure of Insulin Receptor

INSULIN-RECEPTOR COMPLEX

Effects in the intracellular space

after autophosphorylation:

Glucose transport

stimulation across the cellular membrane

Phosphorylation of Phosphodiesterase:

as the result the cAMP

Stimulation of &

Acetyl-CoAcarboxylase, Glycogen synthetase, Pyruvate dehydrogenase, Pyruvate kinase, Phosphofructokinase

Stimulation of phosphoprotein phosphatases

Dephosphorylation

Suppression of

Glycogen

phosphorylase α ,

Triacylglycerol

lipase

Stimulation of gene expression

for

Tyrosine

aminotransferase,

Palmitate

synthetase,

Pyruvate kinase,

Glucokinase, STH,

Albumins,

Ovalbumin

Suppression of gene expression

for Phosphoenol-

pyruvate

carboxykinase

The **Mechanism of** action for Lipophilic **Hormones (H)**; **HRE** -Hormone Response **Elements**

AF1, AF2 domains that mediate the stimulation of the transcription

They have affinity to receptors of steroidal hormone containing so named "zink-fingers"

THANK YOU
For
ATTENTION

