Heart Murmurs

David Leder

Outline

- I. Basic Pathophysiology
- II. Describing murmurs
- III. Systolic murmurs
- IV. Diastolic murmurs
- V. Continuous murmurs
- VI. Summary

Basic Pathophysiology

Murmurs = Math

Q = V * A

Q = P/R

 $N_R = d*D*V/n$

Therefore:

Inc. $P \Rightarrow Inc. V \Rightarrow Inc. N_R$

Systolic Diastolic

Describing a heart murmur

1. Timing

- murmurs are longer than heart sounds
- HS can distinguished by simultaneous palpation of the carotid arterial pulse
- systolic, diastolic, continuous

2. Shape

• crescendo (grows louder), decrescendo, crescendo-decrescendo, plateau

3. Location of maximum intensity

- is determined by the site where the murmur originates
- e.g. A, P, T, M listening areas

Describing a heart murmur con't:

4. Radiation

• reflects the intensity of the murmur and the direction of blood flow

5. Intensity

- graded on a 6 point scale
 - Grade 1 = very faint
 - Grade 2 = quiet but heard immediately
 - Grade 3 = moderately loud
 - Grade 4 = loud
 - Grade 5 = heard with stethoscope partly off the chest
 - Grade 6 = no stethoscope needed
 - *Note: Thrills are assoc. with murmurs of grades 4 6

Describing a heart murmur con't:

6. Pitch

- high, medium, low
- 7. Quality
 - blowing, harsh, rumbling, and musical
- 8. Others:
 - i. Variation with respiration
 - Right sided murmurs change more than left sided
 - ii. Variation with position of the patient
 - iii. Variation with special maneuvers
 - Valsalva/Standing => Murmurs decrease in length and intensity
 EXCEPT: Hypertrophic cardiomyopathy and Mitral valve prolapse

Systolic Murmurs

- Derived from increased turbulence associated with:
 - 1. Increased flow across normal SL valve or into a dilated great vessel
 - 2. Flow across an abnormal SL valve or narrowed ventricular outflow tract e.g. aortic stenosis
 - 3. Flow across an incompetent AV valve e.g. mitral regurg.
 - 4. Flow across the interventricular septum

Early Systolic murmurs

- 1. Acute severe mitral regurgitation
 - decrescendo murmur
 - best heard at apical impulse
 - Caused by:
 - i. Papillary muscle rupture
 - ii. Infective endocarditis
 - iii. Rupture of the chordae tendineae
 - iv. Blunt chest wall trauma
- 2. Congenital, small muscular septal defect
- 3. Tricuspid regurg. with normal PA pressures

Midsystolic (ejection) murmurs

- Are the most common kind of heart murmur
- Are usually crescendo-decrescendo
- They may be:
 - 1. Innocent
 - common in children and young adults
 - 2. Physiologic
 - can be detected in hyperdynamic states
 - e.g. anemia, pregnancy, fever, and hyperthyroidism
 - 3. Pathologic
 - are secondary to structural CV abnormalities
 - e.g. Aortic stenosis, Hypertrophic cardiomyopathy, Pulmonic stenosis

Aortic stenosis

- Loudest in aortic area; radiates along the carotid arteries
- Intensity varies directly with CO
- A2 decreases as the stenosis worsens
- Other conditions which may mimic the murmur of aortic stenosis w/o obstructing flow:
 - 1. Aortic sclerosis
 - 2. Bicuspid aortic valve
 - 3. Dilated aorta
 - 4. Increased flow across the valve during systole

Hypertrophic cardiomyopathy

- Loudest b/t left sternal edge and apex; Grade 2-3/6
- Does NOT radiate into neck; carotid upstrokes are brisk and may be bifid
- Intensity increases w/ maneuvers that decrease LV volume

Pansystolic (Holosystolic) Murmurs

- Are pathologic
- Murmur begins immediately with S1 and continues up to S2

1. Mitral valve regurgitation 🀠

- Loudest at the left ventricular apex
- Radiation reflects the direction of the regurgitant jet
 i. To the base of the heart = anterosuperior jet (flail posterior leaflet)
 - ii. To the axilla and back = posterior jet (flail anterior leaflet
- Also usually associated with a systolic thrill, a soft S3, and a short diastolic rumbling (best heard in left lateral decubitus
- 2. Tricuspid valve regurgitation
- 3. Ventricular septal defect

Diastolic Murmurs

- Almost always indicate heart disease
- Two basic types:
 - 1. Early decrescendo diastolic murmurs
 - signify regurgitant flow through an imcompetent semilunar valve
 - e.g. aortic regurgitation
 - 2. Rumbling diastolic murmurs in mid- or late diastole
 - suggest stenosis of an AV valve
 - e.g. mitral stenosis

Aortic Regurgitation

- Best heard in the 2nd ICS at the left sternal edge
- High pitched, decrescendo
- Blowing quality => may be mistaken for breath sounds
- Radiation:
 - i. Left sternal border = assoc. with primary valvular pathology;
 - ii. Right sternal edge = assoc. w/ primary aortic root pathology
- Other associated murmurs:

- i. Midsystolic murmur
- ii. Austin Flint murmur

Mitral Stenosis

- Two components:
 - 1. Middiastolic during rapid ventricular filling
 - 2. Presystolic during atrial contraction; therefore, it disappears if atrial fibrillation develops
- Is low-pitched and best heard over the apex (w/ the bell)
- Little or no radiation
- Murmur begins after an Opening Snap; S1 is accentuated

Continuous Murmurs

- Begin in systole, peak near s2, and continue into all or part of diastole.
- 1. Cervical venous hum
 - Audible in kids; can be abolished by compression over the IJV
- 2. Mammary souffle
 - Represents augmented arterial flow through engorged breasts
 - Becomes audible during late 3rd trimester and lactation
- 3. Patent Ductus Arteriosus
 - Has a harsh, machinery-like quality
- 4. Pericardial friction rub
 - Has scratchy, scraping quality

Back to the Basics

- 1. When does it occur systole or diastole
- 2. Where is it loudest A, P, T, M
- I. Systolic Murmurs:
 - 1. Aortic stenosis ejection type
 - 2. Mitral regurgitation holosystolic
 - 3. Mitral valve prolapse late systole

II. Diastolic Murmurs:

- 1. Aortic regurgitation early diastole
- 2. Mitral stenosis mid to late diastole

Summary

- A. Presystolic murmur
 - Mitral/Tricuspid stenosis
- B. Mitral/Tricuspid regurg.
- C. Aortic ejection murmur
- D. Pulmonic stenosis (spilling through S20
- E. Aortic/Pulm. diastolic murmur
- F. Mitral stenosis w/ Opening snap
- G. Mid-diastolic inflow murmur
- H. Continuous murmur of PDA