Лекция 4

АППАРАТНОЕ ОБЕСПЕЧЕНИЕ КОМПЬЮТЕРА

История создания вычислительных средств

- Абак, V век до н.э.
- Логарифмическая линейка , XVI век
- Механический арифмометр, 1879 г.
- Электронный компьютер ENIAC, 1946 г

Поколения ЭВМ

- Первое поколение, на лампах, 1946 1955 гг
- Второе поколение, на транзисторах, 1955-1965 гг
- Третье поколение, интегральные микросхемы, 1965 — нач. 70-х
- Четвертое поколение, микропроцессоры, ПК,
 70-е наши дни

Характеристики компьютеров разного поколения

Таблица характеристик различных поколений компьютеров

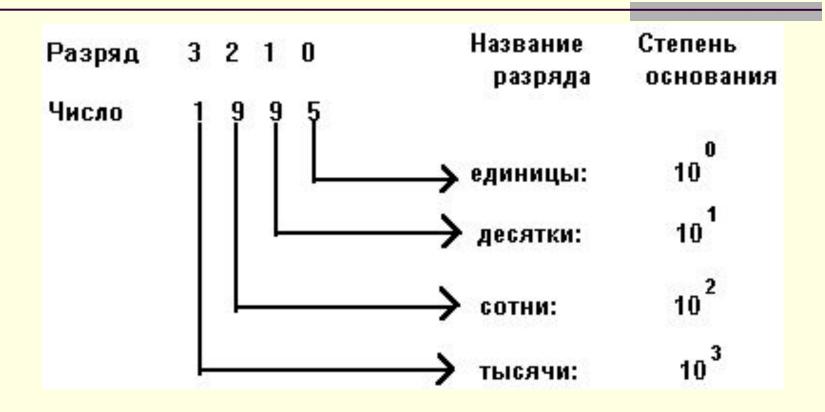
характеристика	1-е поколение (ЭНИАК)	2-е поколение (ЭВМ "МИР")	3-е поколение (EC-1022)	4-е поколение (IBM PC)
масса	30 тонн	300 кг	150 кг	20 кг
объем	170 куб.м.	2 куб.м.	6 куб.м.	0.7 куб.м
оперативная память	20 ячеек	2000 ячеек	128 Кбайт	640 Кбайт
быстродействие	5000 on/c	8000 on/c	80000 on/c	2 мл н. оп/с

Классификация современных ПК

Марка процессора	Быстродействие (тактовая частота), МГц	Оперативная память, Мб	Жесткий диск (винчестер), Мб
286	8 — 20	1 — 2	20 — 80
386	40 — 60	2 — 4	40 — 200
486	66 — 100	4 — 8	80 — 500
Pentium	100 — 300	8 — 32	500 — 2000
Pentium II	300 — 450	16 — 32	1000 — 4000
Pentium III	500 — 1000	32 — 128	10000 — 40000
Pentium IV	1000 — 3400	128 — 512	10000 — 80000

Характеристики мониторов ПК

Тип монитора	Разрешение (точек по горизонтали X по вертикали)	Число цветов
CGA	320 x 200	16
EGA	640 x 350	64
VGA	640 x 480	256
SuperVGA	1024 x 768	до 16 млн.


Типы принтеров

Тип	Способ печати	Скорость печати (символов/сек)
Матричный	Печатающей головкой с 9-ю (18-ю или 24-мя) иглами через красящую ленту	200- 400
Струйный	Картриджем с чернилами путем выстреливания чернил через маленькие сопла	200-500
Лазерный	Принцип подобен ксерографии: намагничивание участков барабана лазерным лучем, прилипание к ним тонера — красящего порошка и перенос на бумагу	1000 – 5000

1. Принцип двоичности Системы счисления

- Позиционные и непозиционные
- Непозиционная римская
- Позиционные:
- □ Десятичная (цифры 0,1,2,3,4,5,6,7,8,9)
- □ Двоичная (цифры 0 и 1)
- □ Восьмеричная (0,... 7)
- □ 16-тиричная (0,1,...9,A,B,C,D,E,F)

Поразрядное представление чисел

10-9:
$$1 \cdot 10^3 + 9 \cdot 10^2 + 9 \cdot 10^1 + 5 \cdot 10^0 = 1995$$

2-9:
$$1011 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 11_{10}$$

Соответствие чисел для 10-й, 2-й и 16-ричной систем счисления

Система счисления		Система счисления			
десятичн ая	двоичн ая	16-ричная	десятичная	двоичн ая	16-ричная
0	0	0	8	1000	8
1	1	1	9	1001	9
2	10	2	10	1010	A
3	11	3	11	1011	В
4	100	4	12	1100	С
5	101	5	13	1101	D
6	110	6	14	1110	Е
7	111	7	15	1111	F

Перевод числа 363 из 10-й в 2-ю

Число	Делитель	Остаток
363	2	1
181	2	1
90	2	0
45	2	1
22	2	0
11	2	1
5	2	1
2	2	0
1	2	1
0	2	

Результат получается, если все остатки от деления записать в обратном порядке, снизу вверх: ${}^{13}24_{10} = 101101011_2$

Сложение двоичных чисел

Поскольку компьютер пользуется двоичной системой счисления, то он использует очень простые правила сложения и умножения:

$$0+0=0$$
 $0+1=1$ $1+0=1$ $1+1=10$ $0 \cdot 0 = 0$ $0 \cdot 1 = 0$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$

Пример Сложить числа 111₂ и 1₂

1000

Проверка:
$$111_2 = 1 \cdot 22 + 1 \cdot 21 + 1 \cdot 20 = 7_{10} + 1_2 = 1 \cdot 20 = 1_{10}$$

T.e. 7+1=8, a $8_{10}=1000_2$

Преобразование в 16-ричную систему счисления

- Из 10-й: путем последовательного деления и выписыванием остатков (в обр.пор.)
- Из 2-ой: Разбиением двоичного числа на группы по четыре цифры (тетрады) и записыванием 16-ричных цифр

Примеры перевода из 2-й в 16-ричную

```
Например, 255_{10} = 111111111_{2}.
Здесь имеем две тетрады: 1111 1111.
Значит, 255_{10} = 111111111_2 = FF_{16}.
Проверим правильность – переведем в десятичную систему
из 16-ричной: FF_{16} = F^*16^1 + F^*16^0 = 15^*16 + 15^*1 = 240 + 15 =
255_{10} , t.e. все верно.
    Другой пример: 10 1111 1000 0101 1001.
Видно, что впереди необходимо добавить два нуля:
        0010 1111 1000 0101 1001.
        2 F 8 5 9
Тогда имеем: 10 1111 1000 0101 1001<sub>2</sub> = 2F859_{16} .
Проверим, пересчитав в 10-й системе:
10 1111 1000 0101 1001<sub>2</sub> = 2^{17} + 2^{15} + 2^{14} + 2^{13} + 2^{12} + 2^{11} + 2^{6} + 2^{4} + 2^{3} + 1
= 194649_{10}.
2F859_{16} = 2*16^4 + F*16^3 + 8*16^2 + 5*16^1 + 9 =
2*65536+15*4096+8*256+89 = 194649_{10}
    Видим, что все верно.
                                   из 24
```

14

4. Принцип адресуемости памяти Единицы измерения информации

- Бит (bit, binary digit двоичная цифра: 0 или
 1)
- 15161 $\frac{1}{1}$ 1 $\frac{1}$ 1 $\frac{1}{1}$ 1 $\frac{1}$ 1 $\frac{1}$ 1 $\frac{1}{1}$ 1 $\frac{1}$ 1 $\frac{1$
- 1байт = 1 символ
- 1 Кбайт = 2¹⁰ байт = 1024 байта
- 1 Мбайт = 2²⁰ байт = 1024 Кбайт
- 1 Гбайт = 2³⁰ байт = 1024 Мбайт

Разрядность процессоров

- 8-ми разрядные (обрабатывает разом только 1 байт)
- 16 –разрядные (2 байта = слово)
- 32-разрядные (4 байта двойное слово)
- 64 -разрядные

Представление целых чисел (16-разрядный процессор)

В 16-разрядных компьютерах для хранения и обработки целых чисел используется 2 байта памяти. Какие целые числа могут обрабатывать такие компьютеры? Вспомни, что целые числа могут быть положительными и отрицательными. Как закодировать знак числа? Для этого можно использовать один из 16 битов, например, самый левый бит. Если он равен 0, то будем считать число положительным, а если он равен 1 – отрицательным. Итак, запомни:

Для записи целого числа используется два байта (16 битов). Один бит используется для знака числа и 15 битов – для абсолютной величины числа.

По этой схеме целое число будет иметь наибольшую абсолютную величину, если все 15 битов будут равны 1:

 $(111\ 1111\ 1111\ 1111_2 + 1) - 1 =$ = 1 000 0000 0000 0000₂ - 1 = 2¹⁵ - 1 = 32767.

Наибольшее целое число, которое может обработать процессор 16-разрядного компыстера, равно 32767.

Представление вещественных чисел (16-разр.процессор)

Вещественные (дробные) числа обычно занимают в памяти компьютера 4 байта, а сами числа представляются в экспоненциальной форме. Например, число 184.525 = 0.184525E+3. Здесь 184525 — это мантисса числа, а 3 — порядок числа (E+3 означает "умножить на 10³").

В ячейке из 4 байтов нужно хранить мантиссу числа со знаком и порядок числа тоже со знаком. Имеющиеся разряды (биты) распределены следующим образом: 7 битов для порядка числа (вместе с его знаком) и 25 битов для мантиссы числа (тоже со знаком).

Для записи вещественного числа используется четыре байта (32 бита). Семь битов используется для порядка числа и 25 битов – для мантиссы числа.

По этой схеме максимальная абсолютная величина порядка числа равна $2^6-1=63$, а максимальная величина мантиссы равна $2^{24}-1=16$ 777 215. Итак, *мантисса вещественного числа не может содержать больше 8 десятичных цифр.* Компьютер при вычислениях отбрасывает лишние цифры в мантиссе, поэтому все вычисления с вещественными числами на компьютере всегда выполняются *приближенно*.

Представление целых чисел (32-разрядный процессор)

В 32-разрядных компьютерах для хранения и обработки целых чисел используется 4 байта памяти. Какие целые числа могут обрабатывать такие компьютеры? Для знака "заберем" один бит из 32 (самый левый бит). Если он равен 0, то будем считать число положительным, а если он равен 1 – отрицательным. Итак, запомни:

Для записи целого числа на 32-разрядном процессоре используется четыре байта (32 бита). Один бит используется для знака числа и 31 бит – для абсолютной величины числа.

По этой схеме целое число будет иметь наибольшую абсолютную величину, если все 31 бит будут равны 1:

 $(111\ 1111$

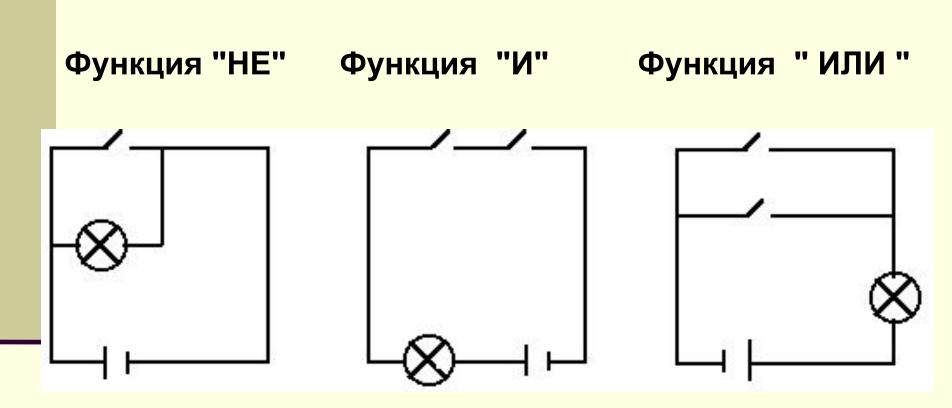
Наибольшее целое число, которое может обработать процессор 32–разрядного компынатера, равно 2147483647.

Обработка информации в компьютере

- Сведение арифметических операций к простейшим логическим (которые реализуются аппаратно)
- Логические функции: инверсия (НЕ), дизъюнкция (ИЛИ), конъюнкция (И)

Таблицы истинности основных логических функций

Функция "НЕ" Функция "ИЛИ"


Функция "И"

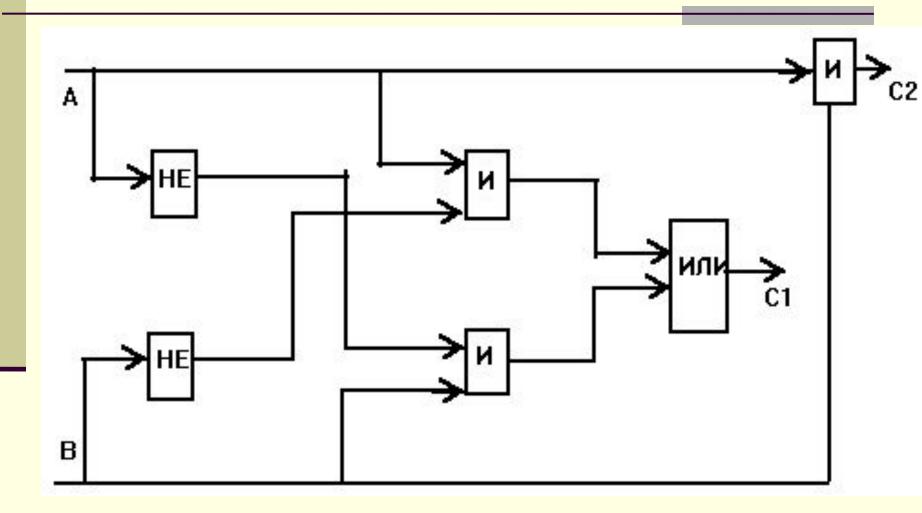
Вход	Выход	
0	1	
1	0	

Вход1	Вход2	Выход
0	0	0
1	0	1
0	1	1
1	1	1

Вход1	Вход2	Выход
0	0	0
1	0	0
0	1	0
1	1	1

Иллюстрация основных логических функций

Реализация сложения двоичных цифр


Посмотрим, как реализуется на основе этих логических функций сложение двоичных цифр 0 и 1 :

$$0 + 0 = 00$$
, $0 + 1 = 01$, $1 + 0 = 01$, $1 + 1 = 10$ (для единой записи результаты написаны в виде двузначных чисел)

или в общем виде можно записать так:

$$A + B = C_2C_1.$$

Схема двоичного сумматора

