- PSpice рассчитывает такие характеристики электронных цепей:
- .Режим по постоянному току в «рабочей точке» (Bias Point);
- .режим по постоянному току при вариации источников постоянного напряжения или тока, температуры и других параметров цепи (DC Sweep);
- .чувствительность характеристик цепи к вариации параметров компонентов в режиме по постоянному току (Sensitivity);
- .малосигнальные передаточные функции в режиме по постоянному току (Transfer Function);
- .характеристики линеаризованной цепи в частотной области при воздействии одного или нескольких сигналов (AC Sweep);
- .спектральную плотность внутреннего шума (Noise Analysis);
- .переходные процессы при воздействии сигналов различной формы (Transient Analysis);
- .спектральный анализ (Fourier Analysis);
- ."статистические испытания по методу Монте-Карло и расчет наихудшего случая (Monte Carlo/Worst Case);
- .Многовариантный анализ при вариации температуры (Temperature) и других параметров (Parametric).

Имя	Назначение
Расчет станда	артных характеристик
.AC	Расчет частотных характеристик
.DC	Расчет режима по постоянному току
.FOUR	Спектральный анализ
.NOISE	Расчет уровня внутреннего шума
.OP	Передача в выходной файл параметров схемы, линеаризованной в окрестности рабочей точки
.SENS	Расчет малосигнальных чувствительностей в режиме по постоянному току
.TF	Расчет малосигнальных передаточных функций в режиме по постоянному току
.IRAN	Расчет переходных процессов
Управление в	ыдачей результатов
.PLOT	Представление результатов расчета в выходном файле в виде графиков построенных в текстовом режиме

Имя	Назначение
.PRINT	Представление результатов расчета в выходном файле в виде таблиц
.PROBE	Передача данных в графический постпроцессор Probe
.VECTOR	Создание файла с результатами моделирования цифровых устройств
.WATCH	Выдача промежуточных результатов анализа на экран программы PSpice в текстовом виде
.WIDTH	Назначение длины строк выходного файла

Имя	Назначение	
Многовариантн	ыйанализ	
.STEP	Вариация параметров	
.TEMP	Назначение температуры окружающей среды	
Вспомогательн	ые файлы, определение функций и параметров	
.END	Конец задания	
.FUNC	Определение функции	
.INC	Включение во входной файл другого файла	
.LIB	Подключение библиотеки моделей компонентов	
.PARAM	Определение глобальных параметров	

Имя	Назначение
Статистический ана	лиз
.MC	Статистический анализ по методу Монте -Карло
.WCASE	Расчет наихудшего случая
Модели устройств	
.ENDS	Конец описания макромодели
.DISTRIBUTION	Табличное определение закона распределения случайных величин
.MODEL	Описание моделей компонентов
.SUBCKT	Начало описания макромодели

Задание <mark>н</mark> ачальны	х условий							
.IC	Задание начальных условий							
LOADBIAS	Считывание из файла узловых потенциалов схемы							
NODESET	Задание узловых потенциалов по постоянному току на начальной итерации							
SAVEBIAS	Запись в файл узловых потенциалов схемы							
Прочие директивь	1							
ALIASES	Начало списка соответствий имен выводов графических обозначений компонентов именам цепей схемы , к которым они подключены							
ENDALIASES	Конец списка соответствий							
.EXTERNAL	Спецификациявнешних портов							
OPTIONS	Установка параметров и режимов работы программы							
STIMLIB	Задание имени файла с описанием внешних воздействий							
STIMULUS	Залание внешних возлействий							

Имя	Назначение
.TEXT	Задание текстовых переменных, текстовых выражений или имен файлов используемых в описании цифровых устройств
*	Комментарий
;	Комментарий в конце строки
+	Продолжение строки

При работе с OrCAD Capture аналогичные директивы моделирования задаются или редактируются по командам PSpice>New/Edit Simulation Profile.

🛂 File Edit View Place Macro	PSpice Accessories Options Window	Help
	New Simulation Profile	
SCHEMATIC1-bias	Run F11 🗗	1 1
5	View Simulation Results F12	
	View Output File	64 H H
Provide anternation anternation anternation anter-	Create Netlict	603 - 1002 6034 - 4024
$(x_1, x_2, x_3, x_4, x_1, x_2, x_3, x_4, x_4, x_4, x_4, x_4, x_4, x_4, x_4$		
terre mente mente mente me	Advanced Analysis	ist tist
	Magaatia Dariapar	
ante morte morte morte mo	Magnetic Designer	25 M
tota tituta tituta tituta tit	Markers •	6 18i
	Dias Daiaka	
	Bias Points	

Создадим новый профиль моделирования

New Simulation	E E
Name:	Create
DC_model	
Inherit From:	Cancel
none	
Root Schematic: SCHEMATIC1	

И сохраним установленные параметры. На всякий случай.

nalysis type: "ime Domain (Transient) 💌	Run to time: 1000ns seconds (TSTO	P)					
ptions:	Start saving data after: 0 seconds						
General Settings Monte Carlo/Worst Case	Transient options Maximum step size:						
]Parametric Sweep]Temperature (Sweep)]Save Bias Point	Skip the initial transient bias point calculation (SKIPBP)						
Load Bias Point	Output File	Options					

Введем схему

И сохраним. Тоже на всякий случай.

Где можно посмотреть текстовый файл анализируемой схемы...

Capture CIS - [D:\ORCAD_PROJ\UNI\try.opj]
File Design Edit View Tools PSpice Accessories Reports Options Window Help
SCHEMATIC1-DC_model 🔄 🎦 🏷 🦻 🖉 🕫 🔍 🖉 V 🕎 I 🖅 W 🖙
Analog or Mixed A/D
File E. Hierarchy
E Design Resources
E 🛱 .\try.dsn
Right \try-pspicefiles\schematic1\schematic1.net
E PSpice Resources
Model Libraries

Где можно посмотреть текстовый файл анализируемой схемы...

Capture CIS	- [D:\ORCAD_PROJ\UNI\try-pspicefiles\s									
Tile Edit Opt	tions Window Help									
1 2 3 8										
SCHEMATIC1-D	SCHEMATIC1-DC_model 💽 🐮 🚍 🕨 🦻 🔎									
1: * source	TRY									
2: R_R1	N00167 N00177 1k									
3: R_R2	N00177 0 1k									
4: V_V1	N00167 0 10Vdc									
5:										

Запустим моделирование

Получим решение для напряжений в узловых точках

Получим решение для напряжений в узловых точках

Индикатор тока привязан не к проводнику а к элементу !!!

Сначала появится окно программы PSpice

🛃 S	CHEN	AATIC1	-DC_mo	del - P	Spice	A/D									
Eile	<u>E</u> dit	⊻iew	Simulation	<u>T</u> race	Plot	T <u>o</u> ols <u>W</u>	/indow <u>H</u> e	elp 🚮							
1	• (2 2	•	W X	Þ f		<u> </u>	CHEMA	TIC1-DC	C_mode	1			п	
•	Q	<u></u>	$ \rightarrow +$		0 <u>Fr</u>	₩目	K 74	5 AB \	~ 9 7	×	***	¥ 77 3	* 44 1	お住る	,0
9										00040					
1															
Ð		圆 DC	_model.	dat (ad	ctive)										
			0s				0.2us				0.4us			0.	ðus
												г	ime		

Посмотрим выходной файл

💹 SCHE	MATIC1-DC_model - PSpice A/D	
<u>File</u> <u>E</u> di	t <u>View S</u> imulation <u>T</u> race <u>P</u> lot T <u>o</u> ols <u>W</u> ind	dow Help 🕵
	Zoom •	SCHEMATIC1-DC_model
	Measurement Results	ト 元 98 、 … 4 ** V - 4 Vi ** ** 43 ハ
	출처 Circuit File	
9	Call Output File	
题	Simulation Results	
æ	Simulation Messages	**** PSpice 10.5.0 (Jan 2005) ******* "IC model" [D:\ORCAD PROJ\UNI\try-PSc
a	Simulation Queue	
	✓ Output Window	ION
	 Simulation Status Window 	
	Toolbars	***************************************
	🖌 🖌 <u>S</u> tatus Bar	
	✓ <u>W</u> orkbook Mode	- DC model cir"
	Alternate Display Shift+F12	ALLY GENERATED FILE MAY BE OVERWRITTE
	🖉 Always <u>O</u> n Top	
	Large Data File Mode	
	→ Load Next Part	ction of C:\OrCAD\OrCAD_10.5\tools\PS
		-

**** 10/15/10 08:44:04 ****** PSpice 10.5.0 (Jan 2005) ****** ID# 2089878865
** Profile: "SCHEMATIC1-DC_model" [D:\ORCAD_PROJ\UNI\try-PSpiceFiles\SCHEMATIC1\DC_model.sim]
**** CIRCUIT DESCRIPTION

** Creating circuit file "DC_model.cir"

*Libraries:

* Profile Libraries :

* Local Libraries :

* From [PSPICE NETLIST] section of C:\OrCAD\OrCAD_10.5\tools\PSpice\PSpice.ini file: .lib "nom.lib"

Analysis directives: .TRAN 0 1000ns 0 .PROBE V(alias()) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*)) .INC "..\SCHEMATIC1.net"

**** INCLUDING SCHEMATIC1.net **** * source TRY

- **R_R1** N00167 N00177 1k
- **R_R2 N00177 0 1k**
- V_V1 N00167 0 10Vdc

**** RESUMING DC_model.cir ****
.END

**** 10/15/10 08:44:04 ****** PSpice 10.5.0 (Jan 2005) ****** ID# 2089878865 ** Profile: "SCHEMATIC1-DC_model" [D:\ORCAD_PROJ\UNI\try-PSpiceFiles\SCHEMATIC1\DC_model.sim]

**** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(N00167) **10.0000** (N00177) **5.0000**

VOLTAGE SOURCE CURRENTSNAMECURRENT

V_V1 -5.000E-03

TOTAL POWER DISSIPATION 5.00E-02 WATTS

JOB CONCLUDED

**** 10/15/10 08:44:04 ****** PSpice 10.5.0 (Jan 2005) ****** ID# 2089878865 ** Profile: "SCHEMATIC1-DC_model" [D:\ORCAD_PROJ\UNI\try-PSpiceFiles\SCHEMATIC1**DC_model.sim**]

**** JOB STATISTICS SUMMARY

Total job time (using Solver 1) = .05

Попробуем отмоделировать Законы Кирхгофа в Capture CIS...

Bridge
V 3 0 25V
RI 1 2 100
R2 1 0 75
R3 2 3 50
R4 4 0 50
R5 2 4 150
R6 1 4 200 - OP . END

Попробуем отмоделировать Законы Кирхгофа в Capture CIS...

Попробуем отмоделировать Законы Кирхгофа в Capture CIS...

nulation Sattings - D	(C. model					75	.60mA
rutation settings - D	C_model	2			97.04mA	R1	R2
eneral Analysis Confi	guration Files Options Data Collection	Probe Wir	ndow				
Category:				(.OPTION)	2 2 2 2 2	100	R5 150
Analog Simulation	Relative accuracy of V's and I's:	0.001		(RELTOL)			
Gate-level Simulation	Best accuracy of voltages:	1.0u	volts	(VNTOL)	2 2 2 2 2	172 6mA	L 50
	Best accuracy of currents:	1.0p	amps	(ABSTOL)	04 (E) 04 (E) 04	172.0MA	o e o e o e o
	Best accuracy of charges:	0.01p	coulomb	s (CHGTOL)	24 25 24 25 24	1/4	<u></u>
	Minimum conductance for any branch:	1.0E-12	1/ohm	(GMIN)	9 6 9 6 9	25	
	DC and bias "blind" iteration limit:	150		(ITL1)	00.05	25	- 170 CmA
	DC and bias "best guess" iteration limit:	20		(ITL2)	Amco.oo	D 2	172.6mA
	Transient time point iteration limit:	10		(ITL4)	a a a a dig	RJ	K4
	Default nominal temperature:	27.0	°C	(TNOM)	a a a a a a	-	
	Use GMIN stepping to improve conv	/ergence.		(STEPGMIN)		75	60
	🔲 Use preordering to reduce matrix fill-i	in.		(PREORDER)			⁻ 0 83.79m
	MOSFET Options Adva	anced Opti	ons	Reset			R6
	ОК Отмена	Прим	енить	Справка .		3.184mA	200

Analysis directives: TRAN 0 1000ns 0 OPTIONS RELTOL= 0.0001 PROBE V(alias()) I(alias(*)) V(alias(*)) D(alias(*)) NOISE(alias(*)) INC "... SCHEMATIC1.net" **** INCLUDING SCHEMATIC1.net **** * source TRY R R1 N00921 N00989 100 R_R2 N00989 N00211 150 V V1 N000910 0 25 R_R5 N000910 N00989 50 R_R3 N00921 0 75 R R6 N00921 N00211 200 R_R4 0 N00211 60 **** RESUMING DC_model.cir **** .END

NODE	VOLTAGE	NODE	VOLTAGE	NODE	VOLTAGE	NODE	VOLTAGE
(N00211) 5.027	73 (NOO921)) 6.6641	(N00989) 16.3680	(N000910) 25.0000
VOL' NAMI	FAGE SOURC E	CE CURRENTS CURRENT	6				
V_V	1 -	-1.726E-01					
TOT	AL POWER I	DISSIPATION	4.32E+00) WATTS			

Добавьте <u>нужные</u> операнды, чтобы увидеть все токи с требуемой точностью. повешенным.

С помощью программы PSPICE проверьте истинность того, что в уравновешенном мосте значение тока в контуре с сопротивлением R6 равно нулю.

Расчет цепи переменного тока, состоящей из последовательно соединенных резистора, катушки индуктивности и конденсатора,

<u>в стационарном состоянии</u> можно

произвести и без компьютера, но PSPICE сделает это во много раз быстрее, чем вы, и не допустит ошибок.

Правда что делать с вашими ошибками он не знает..... Для начала создадим схему, состоящую из резистора R - 100 Ом, конденсатора C = 2 мкФ и источника переменного напряжения с амплитудой U=1B и f = 1 кГц.

ПОМНИТЕ!!!!

Для анализа в режиме АС можно использовать только источник VAC

Для решения поставленной задачи не требуется проводить полный анализ частотных характеристик (AC Sweep), нужно исследовать схему только для одной единственной частоты f = 1 кГц.

Для этого придется провести анализ переменного напряжения в одной точке, начинающийся при f *= 1 кГц (поле Start Freq. - Начальная частота) и заканчивающийся при

f = 1 кГц (поле End Freq. Конечная частота)

Общее

для общего количества точек - 1 (поле Total Points. -

Analysis type:	AC Sweep Type		-
AC Sweep/Noise	• Linear	Start Frequency:	1k
Options:	C Logarithmic	End Frequency:	1k
🗹 General Settings	Decade 💌	Total Points:	1
□ Save Bias Point □ Load Bias Point	I Enabled Outp	ut Voltage: ource: val:	
	Output File Options	is point information for r	nonlinear

Почему значения токов и напряжений после моделирования равны «нулю»????

Для графического представления результатов анализов, например для изображения частотных характеристик, в PSPICE предусмотрена графическая программа-осциллограф, которая называется **PROBE**.

В настоящий момент PROBE едва ли может чемто вам помочь.

Да и как можно графически представить результаты моделирования схемы для одной постоянной частоты?

Результаты анализа PSPICE записывает в выходной файл.

<u>Вот его и надо исследовать!!!!</u>

```
** Creating circuit file "AC-model.cir"
** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN BY SUBSEQUENT SIMULATIONS
*Libraries:
* Profile Libraries :
* Local Libraries :
* From [PSPICE NETLIST] section of C:\OrCAD\OrCAD 10.5\tools\PSpice\PSpice.ini file:
lib "nom lib"
*Analysis directives:
AC LIN 1 1k 1k
.PROBE V(alias(*)) I(alias(*)) V(alias(*)) D(alias(*)) NOISE(alias(*))
.INC "... SCHEMATIC1.net"
**** INCLUDING SCHEMATIC1 net ****
* source TRY
            N01933 N01929 100
R R6
V_V1 N01933 0
+SIN 0 1 1k 0 0 0
C C1
     N01929 0 2u
**** RESUMING AC-model.cir ****
. END
```

Результаты анализа PSPICE записывает в выходной файл.

Вот его и надо исследовать!!!!

NODE	VOLTAGE	NODE	VOLTAGE	NODE	VOLTAGE	NODE	VOLTAGE
(N01929) 0.0000) (N01933) 0.0000				
VOL' NAMI	TAGE SOURCE	E CURRENT CURRENT	S				
v_v :	1 (0.000 E+ 00					
TOTA	AL POWER DI	ISSIPATIO	N 0.00E+00	WATTS			
WARNING	No AC s	sources -	- AC Sweep i	gnored	>		
	JOB CONC	CLUDED			,		

Что бы это значило????.

Ваши поиски не увенчались успехом. Для того чтобы программа PSPICE занесла в выходной файл нужные вам результаты анализа,, перед моделированием схемы нужно сделать особый запрос.

Запрос осуществляется в окне редактора SCHEMATICS путем установки специального символа на чертеже схемы в том месте, данные о котором вы собираете и информация о котором должна быть записана в выходной файл.

В PSPICE предусмотрены такие символы •для потенциалов (VPRINT1);

•для разности потенциалов, то есть для напряжений между двумя точками (VPRINT2);

•для токов (IPRINT).

Все они находятся В библиотеке SPECIAL.slb.

Так это выглядит.....

Разместив на чертеже символ VPRINT1, вы тем самым «попросили* PSPICE записать в выходной файл данные анализа обозначенного вами места.

Теперь остается указать, какие именно сведения вас интересуют. Для этого надо открыть окно атрибутов символа VPRINT1.

Разместив на чертеже символ VPRINT1, вы тем самым приказали PSPICE записать в выходной файл данные анализа обозначенного вами места.

Теперь остается указать, какие именно сведения вас интересуют.

Для этого надо открыть окно атрибутов символа VPRINT1 и ввести нужные изменения.

Посмотрите на окно атрибутов VPRINT1 и выясните, какие еще результаты анализов можно отправлять в выходной файл с его помощью.

Знатоки придут в восторг от возможностей.

Теперь наша схема выглядит

Интересно, что видно в выходном файле....

Теперь наша схема выглядит

```
так
** Creating circuit file "AC-model.cir"
** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN BY SUBSEQUENT SIMUL
*Libraries:
* Profile Libraries :
* Local Libraries :
* From [PSPICE NETLIST] section of C:\OrCAD\OrCAD 10.5\tools\PSpice\PSpice.ini file:
.lib "nom.lib"
*Analysis directives:
AC LIN 1 1k 1k
.PROBE V(alias(*)) I(alias(*)) V(alias(*)) D(alias(*)) NOISE(alias(*))
INC "... SCHEMATIC1.net"
**** INCLUDING SCHEMATIC1.net ****
* source TRY
               AC
PRINT
+ VM([0])
+ VP([0])
R R6
            N01933 N01929 100
V V1
           N01933 0 DC 0Vdc AC 1Vac
C C1
             N01929 0 2u
**** RESUMING AC-model.cir ****
. END
```

Теперь наша схема выглядит

Модифицируем схему....

Покажите, что изменилось в выходном файле

```
** Creating circuit file "AC-model.cir"
** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN BY SUBSEQUENT
*Libraries:
* Profile Libraries :
* Local Libraries :
* From [PSPICE NETLIST] section of C:\OrCAD\OrCAD 10.5\tools\PSpice\PSpice.ini
lib "nom lib"
*Analysis directives:
AC LIN 1 1k 1k
.PROBE V(alias(*)) I(alias(*)) V(alias(*)) D(alias(*)) NOISE(alias(*))
.INC "...\SCHEMATIC1.net"
**** INCLUDING SCHEMATIC1 .net ****
* source TRY
              AC
PRINT
+ VM([N01929])
+ VP([N01929])
V PRINT2
                N01933 N01929 OV
             AC
PRINT
+ IM(V PRINT2)
+ IP(V PRINT2)
R R6
            N01933 N01929 100
V_V1 N01933 0 DC 0Vdc AC 1Vac
C C1 N01929 0 2u
**** RESUMING AC-model.cir ****
. END
```

FREQ VM(N01929) VP(N01929)

1.000E+03 1.000E+00 0.000E+00 5 **** 10/15/10 12:33:49 ****** PSpice 10.5.0 (Jan 2005) ******* ID# 2089878865 ** Profile: "SCHEMATIC1-AC-model" [D:\ORCAD_PROJ\UNI\try-PSpiceFiles\SCHEMATIC1\AC-model.sim

**** AC ANALYSIS TEMPERATURE = 27.000 DEG C

FREQ	<pre>IM(V_PRINT2)IP(V_PRINT2)</pre>						
1.000E+03	1.257E-02	9.000E+01					
JOE	CONCLUDED						

Провести анализ цепи переменного тока

Те кто слева сидит – левая схема, кто справа (от экрана) – правая схема.

Определить мощность, выделяемую в нагрузке

Используем знакомую схему

			Name and Street	
Pptions: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Start saving data after: 0 seconds Transient options Maximum step size: seconds Skip the initial transient bias point calculation (SKIPBP)			
				options

Зададим параметры моделирования

Включим осциллограф

И увидим... диаграмму общего напряжения и напряжения на конденсаторе с шириной шага при моделировании по умолчани

Включим осциллограф

И увидим... диаграмму общего напряжения и напряжения на конденсаторе с шириной шага при моделировании 4 мкс

Прокомментируйте полученны<mark>й</mark> результат

Как добавить вторую ось Ү.....

И вот что получаем....

Применение анализа переходных процессов: зарядка и разрядка конденсаторов

Используем очень знакомую схему но с другим источником сигналов

При заданных значениях для резистора R и конденсатора C значение временной константы равно t - 0.2 мс.

Как известно, процессы зарядки и разрядки конденсаторе после 5 t практически завершаются.

Если установить длительность 4 мс, этого будет вполне достаточно, чтобы полностью отобразить процесс зарядки и разрядки в виде одной общей диаграммы.

Используем очень знакомую схему но с другим источником сигналов

Как изменить цвет выходного графика....

Задание на закрепление материала

Задание (левым). Последовательное соединение резистора и емкости состоит из резистора сопротивлением R = 10 кОм и конденсатора емкостью С - 10 пФ. К выводам цепи подведено переменное напряжение с амплитудой 1 В и частотой колебаний f - 1 мГц. Определите напряжения U_R и U_c, а также сдвиг фазы ј между током и общим напряжением в стационарном состоянии.

Задание (правым). Введите схему электрической цепи из последовательно соединенных резистора, индуктивности и конденсатора, выясните для нее сдвиг фазы (в стационарном состоянии) между током и общим напряжением.

