#### PROVISIONAL GLOBAL BUSINESS AND FINANCIAL ENVIRONMENT Project Management October 2014 part 1

Robin Matthews Professor of International Business Kingston University Business School London JM Keynes Professor of Management Academy of National Economy Moscow

Further papers by robin Matthews can be found at <u>http://robindcmatthews.com</u> <u>http://www.tcib.org.uk/about.html</u>. Also <u>http://kpp-russia.ru</u> and <u>http://www.russtrategy.ru</u>. <u>http://kingston.ac.uk/CIPB.php</u>

# Global business environment: history 1

- Postwar recovery 1945 70
  - Keynesian policies
- Stagflation 1970 -1980
- Monetarism and supply side economics 1980 – 2007
- Global crisis

# Fundamentals managing projects 1

Firms as collections of projects

#### NPV AND NCF NET PRESENT VALUE and NET CASH FLOW

- Net Present Value
- Net Cash Flow
- Fundamental Equation  $\Pi (t) = R(t) - C(t)$  C(t) = W&S(t) + M(t) + I(t) - D(t) + [rd(t) + re(t)]

# Fundamentals managing projects 2

# Integrating the real and financial sectors





Figure 3 | Schematic model for a node in the interbank network. Adapted with permission from ref. 25.

# Meta Model



![](_page_9_Figure_0.jpeg)

#### Project Management October 2014 part 2

Project Management October 2014 part 2

### networks

Synergies and feeedback

![](_page_12_Picture_0.jpeg)

# More complex networks

robindcmatthews

#### Networks: default state Small world: highly clustered, short path lengths

- Degree of a node is the number of edges (*k*) connecting it to other nodes.
- High degree nodes have many connections (high *k*); low degree nodes have few (low *k*)
- *P(k)* probability of degree
  *k* follows a power law
- $P(k) \sim z k^{-\alpha}$ ..

![](_page_14_Figure_5.jpeg)

#### **Chart 1: Global Financial Network: 1985** 1985 ARG HND BRA SPN PRT FRA MEX JPN SNG Haldane (2009) CHN KOR AUS 0.003-0.03 robindcmatthews >0.2 \*Key: 0.03-0.2 -

![](_page_16_Figure_0.jpeg)

#### Chart 3: Global Financial Network: 2005

![](_page_17_Figure_1.jpeg)

#### Project Management October 2014 part 3

# The Crisis 2007 – 20012 The financial tower of Babel

robindcmatthews

![](_page_19_Picture_0.jpeg)

![](_page_20_Figure_0.jpeg)

#### The financial tower of Babel: 21<sup>ST</sup> century

![](_page_21_Figure_1.jpeg)

# Causes of crises

- Low interest rates
- Savings glut
- Financial innovation
- Moral hazard
- None of the above
- All of the above
- Samudaya (the second noble truth: thirst)

## Causes of the crisis?

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

Note: Ultimate risk basis except Germany Source: BIS, Q3 2010

Exposure too Girderkatleebits

Source rge monitor

![](_page_25_Figure_0.jpeg)

Source: Bloomberg

Long term bond yields july 2011 Source

Source rge monitor<sup>26</sup>

### Project Management October 2014 part 4 Emerging nations

Back to the past

![](_page_27_Figure_0.jpeg)

Economist Sept 17 2006

### Why they matter

![](_page_28_Picture_1.jpeg)

Emerging economies as % of world total, 2005

Population Foreign-exchange reserves Energy consumption GDP at PPP Exports

GDP at market exchange rates

Stockmarket capitalisation Sources: IMF; MSCI; BP

![](_page_28_Picture_6.jpeg)

#### Re-emerging

Share of global GDP\*, %

Emerging economies Developed economies

![](_page_29_Figure_3.jpeg)

#### Figure 4. Global – Contributions to Global Growth (Percentage Points)

![](_page_30_Figure_1.jpeg)

Sources: IMF and Citi.

#### Project Management October 2014 part 5 **The environment**

Gaia or exploitation

![](_page_32_Figure_0.jpeg)

#### Project Management October 2014 part 6 Cryptic models

#### Keynesian and monetarist

![](_page_34_Figure_0.jpeg)

Real output

Keynesian case with liquidity trap

![](_page_35_Figure_0.jpeg)

Real output

The pure classical case Reagonomics and crowding out

# Simple Keynesianism

- The multiplier
- The marginal propensity to consume
- The importance of aggregate demand

#### **Keynes: sources of unemployment**

- The liquidity trap
- Inconsistency between savings and investment
- Rigid money wages

## Monetarism

Figure 1: From interest rates to inflation – the transmission mechanism of monetary policy

![](_page_38_Figure_2.jpeg)

# The Phillips curve

![](_page_39_Figure_1.jpeg)

### Project Management October 2014 part 7 Micro-foundations Costs Revenues Risk

#### NPV AND NCF NET PRESENT VALUE and NET CASH FLOW

- Net Present Value
- Net Cash Flow
- Fundamental Equation  $\Pi (t) = R(t) - C(t)$  C(t) = W&S(t) + M(t) + I(t) - D(t) + [rd(t) + re(t)]

![](_page_42_Figure_0.jpeg)

Down output (marginal costs)

#### Scale and scope economies

- Leveraging
- Outsourcing
- Restructuring

# Marketing

segmentation

# Elasticity (price)

- % change in quantity bought/% change in price
- Defined as an absolute value
- Varies along demand curve
- E> 1 implies price reduction increases sales revenue
- E < 1 implies price reduction decreases sales revenue

|           | Effect on sales<br>revenue of price<br>reduction | Effect on sales<br>revenue of a<br>price increase |
|-----------|--------------------------------------------------|---------------------------------------------------|
| Elastic   | Sales Revenue                                    | Sales Revenue                                     |
| Ep >1     | RISES                                            | FALLS                                             |
| Inelastic | Sales Revenue                                    | Sales Revenue                                     |
| Ep <1     | FALLS                                            | RISES                                             |

#### ELASTICITIES

$$E_{P} = |E_{P}|_{=}$$
 price elasticity

 $E_{y}$  income elasticity

$$E_{P} = \frac{\% change in quantity demanded}{\% change in price}$$

 $E_{y=} \frac{\text{%change in quantity demanded}}{\text{%change in income}}$ 

![](_page_48_Picture_0.jpeg)

 $E_{y=} \frac{y}{q} \frac{dq}{dy}$ 

![](_page_49_Figure_0.jpeg)

#### Em = ΣsiEi (i = 1,2,....m)

•where Em denotes the elasticity of the market as a whole Ei denotes the elasticity of the segment i, Ei denotes the elasticity of the segment i and si denotes the share of the segment in total expenditure on the good.

| Elasticity of demand for<br>the market as a whole (for<br>a particular product X) | equals | the sum of the elasticity<br>of each of the segments<br>of the market multiplied<br>by the share of that<br>segment in total<br>expenditure on the<br>market. |
|-----------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   |        |                                                                                                                                                               |