
CS 169
Software Engineering

Armando Fox, David Patterson,
and Koushik Sen

Spring 2012

1

Outline

• Class Organization (AF)
• Engineering SW is Different from HW

(Book Sections 1.1-1.2 or §1.1-§1.2)
• Development Processes: Waterfall vs. Agile (§1.3)
• Assurance (§1.4)
• Productivity (§1.5)
• Software as a Service (§1.6) if time permits
• Service Oriented Architecture (§1.7) if time permits
• Cloud Computing (§1.8) if time permits

2

Course Goals

• Understand new challenges, opportunities,
and open problems of SaaS relative to SWS
(shrink-wrapped software)

• Take a SaaS project from conception to
public deployment
– Server side: Ruby on Rails
– Client side: HTML, CSS, AJAX
– Deploy using cloud computing

• Can be “connected” app (eg Facebook) or
smartphone app (using HTML/AJAX/CSS)

3

Prereqs & course format

• 4 units, letter grade(see homepage for breakdown)
• These are real prereqs: CS61[ABC] or equivalents
• Format

– Before lecture: reading, and sometimes online self-test
– In lecture: put reading in context
– After lecture: 6 homeworks, for hands-on practice;

section for additional detail & worked examples
• 5 30-minute quizzes (every 2 weeks); no final
• Required “2-pizza team” project

– Design, develop, deploy to “production ISP” (Heroku)
– Outsiders invited (VC’s, etc) to final demos
– Many projects have continued after the class

4

Textbook

5

• http://saasbook.info
• Print & Kindle ebook

available
• 2-3 new chapters will be

released during semester
• Kindle ebooks will get free

updates thru Fall 2012
• We’ll distribute hardcopy of

additional chapters to you

Online SaaS Course

• First 5 weeks of on-campus course
• We will use their autograding technology for

grading CS 169 homeworks
• Available 5 weeks after our course starts
• Please delay questions until end of

“segment”, which is typically 6 to 10
minutes

6

Programming Homeworks

• Some done on your own, others in pairs
• Due Friday Midnight (see Syllabus)

– Late policy: ¾ credit if 1 day late, ½ credit if 2 days late, 0 if later

• Can be done on your own computer or Amazon EC2
– Download VirtualBox (for Mac, Win, Linux) and deploy "bookware

VM" image (instructions on saasbook.info)
– OR, deploy & use VM image on Amazon EC2 (instructions coming

soon to saasbook.info) - http://aws.amazon.com/free/
– Unsupported: install ALL courseware on your own computer (Ruby

1.9.2, Rails 3.1, lots of libraries...) – see saasbook.info for details

• Later HW’s and Project will be deployed using cloud
computing (details TBA)

7

Course Organization

• Grading
– 1/3 - six homeworks
– 1/3 - five quizzes (30 mins, in-class)
– 1/3 - project
– Discretionary bonus points during final grading:

Participation and Altruism

• A typical week
– Tue/Thu: lecture, office hours
– Fri 11:59pm: homework due
– Mon: section—discuss HW, review for quizzes

• Use Piazza for questions/discussion

* Spring 2011 -- Lecture
#1

8

YOUR BRAIN ON COMPUTERS; Hooked
on Gadgets, and Paying a Mental Price

NY Times, June 7, 2010, by Matt Richtel
SAN FRANCISCO -- When one of the most important
e-mail messages of his life landed in his in-box a few
years ago, Kord Campbell overlooked it.
Not just for a day or two, but 12 days. He finally saw it
while sifting through old messages: a big company
wanted to buy his Internet start-up.
''I stood up from my desk and said, 'Oh my God, oh my
God, oh my God,' '' Mr. Campbell said. ''It's kind of hard
to miss an e-mail like that, but I did.''
The message had slipped by him amid an electronic
flood: two computer screens alive with e-mail, instant
messages, online chats, a Web browser and the
computer code he was writing.
While he managed to salvage the $1.3 million deal after
apologizing to his suitor, Mr. Campbell continues to
struggle with the effects of the deluge of data. Even after
he unplugs, he craves the stimulation he gets from his
electronic gadgets. He forgets things like dinner plans,
and he has trouble focusing on his family. His wife,
Brenda, complains, ''It seems like he can no
longer be fully in the moment.''

This is your brain on computers.
Scientists say juggling e-mail, phone calls and other incoming
information can change how people think and behave. They say
our ability to focus is being undermined by bursts of
information.

These play to a primitive impulse to respond to
immediate opportunities and threats. The
stimulation provokes excitement -- a dopamine
squirt -- that researchers say can be addictive.
In its absence, people feel bored.
The resulting distractions can have deadly consequences, as
when cellphone-wielding drivers and train engineers cause
wrecks. And for millions of people like Mr. Campbell, these
urges can inflict nicks and cuts on creativity and deep thought,
interrupting work and family life.
While many people say multitasking makes them more
productive, research shows otherwise. Heavy
multitaskers actually have more trouble
focusing and shutting out irrelevant information,
scientists say, and they experience more stress.
And scientists are discovering that even after
the multitasking ends, fractured thinking and
lack of focus persist. In other words, this is also
your brain off computers. Fall 2010 -- Lecture #2 9

The Rules
(and we really mean it!)

10*

Architecture of a Lecture

*

Attentio
n

Time
(minutes)

0 2
0

2
5

5
0

5
3

7
8

8
0

Administrivi
a

“And in
conclusion
…”

Tech
brea
k

Ful
l

Peer Instruction

• Increase real-time learning in lecture,
test understanding of concepts vs.
details
mazur-www.harvard.edu/education/pi.phtml

• As complete a “segment”
ask multiple choice question
– <1 minute: decide yourself, vote
– <2 minutes: discuss in pairs,

then team vote; flash card to pick answer
• Try to convince partner; learn by teaching

• Mark and save flash cards
1 2 3 4

Lecture & Section

• Section
• Office hours & locations on homepage

– Instructor & GSI office hours: concept/HW help
– Staffed lab hours (TBA): programming help and

hackfests

13

Meet the staff

• The GSIs are Michael Driscoll, Richard Xia
• Lab staff are Allen Chen, David Eliahu,

Omer Spillinger, and Richard Zhao

14

Outline

• Class Organization (AF)
• Engineering SW is Different from HW

(Next 5 slides, Book Sections 1.1-1.2 or §1.1-§1.2)
• Development Processes: Waterfall vs. Agile (§1.3)
• Assurance (§1.4)
• Productivity (§1.5)
• Software as a Service (§1.6) if time permits
• Service Oriented Architecture (§1.7) if time permits
• Cloud Computing (§1.8) if time permits

15

Engineering Software is Different
from Engineering Hardware
(Engineering Long Lasting

Software §1.1-§1.2)

David Patterson

16

Engineering Software is
Different from Hardware

• Q: Why so many SW disasters and
no HW disasters?
– Ariane 5 rocket explosion
– Therac-25 lethal radiation overdose
– Mars Climate Orbiter disintegration
– FBI Virtual Case File project abandonment

• A: Nature of 2 media & subsequent cultures

17

Independent Products vs.
Continuous Improvement

• Cost of field upgrade
• HW ≈ ∞

HW designs must be finished before
manufactured and shipped
Bugs: Return HW (lose if many returns)

• SW ≈ 0
Expect SW gets better over time
Bugs: Wait for upgrade

• HW decays, SW long lasting

18

Independent Products vs.
Continuous Improvement

• Cost of field upgrade
• HW_______

HW designs must be finished before
manufactured and shipped
Bugs: Return HW (lose if many returns)

• SW_______
Expect SW gets better over time
Bugs: Wait for upgrade

• HW decays, SW long lasting

19

Legacy SW vs. Beautiful SW

• Legacy code: old SW that continues to
meet customers' needs, but difficult to
evolve due to design inelegance or
antiquated technology
– 60% SW maintenance costs adding new

functionality to legacy SW
– 17% for fixing bugs

• Contrasts with beautiful code: meets
customers' needs and easy to evolve

20

Legacy SW vs. Beautiful SW

• Legacy code: old SW that continues to
meet customers' needs, but difficult to
evolve due to design inelegance or
antiquated technology
– ___% SW maintenance costs adding new

functionality to legacy SW
– ___% for fixing bugs

• Contrasts with beautiful code: meets
customers' needs and easy to evolve

21

Legacy Code: Key but Ignored

• Missing from traditional SWE courses and
textbooks

• Number 1 request from industry experts we
asked: What should be in new SWE
course?

• NEW: assignment to enhance legacy code
in 2nd half of Berkley course

22

Legacy code

Unexpectedly short-lived code

Both legacy code and unexpectedly short
lived code

Beautiful code☐

☐

☐

☐

23

Question: Which type of SW is
considered an epic failure?

Development processes:
Waterfall vs. Agile

(Engineering Long Lasting Software §1.3)

David Patterson

24

Development Processes:
Waterfall vs. Agile

• Waterfall “lifecycle” or development
process
– A.K.A. “Big Design Up Front” or BDUF

1. Requirements analysis and specification
2. Architectural design
3. Implementation and Integration
4. Verification
5. Operation and Maintenance
• Complete one phase before start next one

– Why? Earlier catch bug, cheaper it is
– Extensive documentation/phase for new people

25

How well does Waterfall work?

• Works well for important software with
specs that won’t change: NASA spacecraft,
aircraft control, …

• But often when customer sees result, wants
big changes

• But often after built first one, developers
learn right way they should have built it

26

How well does Waterfall work?

• “Plan to throw one [implementation] away;
you will, anyhow.”

- Fred Brooks, Jr.

 (received 1999 Turing Award for
contributions to computer
architecture, operating systems,
and software engineering)

27

(Photo by Carola Lauber of SD&M
www.sdm.de. Used by permission
under CC-BY-SA-3.0.)

Peres’s Law

 “If a problem has no solution,
it may not be a problem,
but a fact, not to be solved,
but to be coped with over time.”

— Shimon Peres
(winner of 1994
Nobel Peace Prize
for Oslo accords)

28
(Photo Source: Michael Thaidigsmann, put in public domain,
See http://en.wikipedia.org/wiki/File:Shimon_peres_wjc_90126.jpg)

Agile Manifesto, 2001

“We are uncovering better ways of developing SW
by doing it and helping others do it. Through this
work we have come to value

•Individuals and interactions over processes & tools
•Working software over comprehensive
documentation

•Customer collaboration over contract negotiation
•Responding to change over following a plan
That is, while there is value in the items on the right,
we value the items on the left more.”

29

Agile Manifesto, 2001

“We are uncovering better ways of developing SW
by doing it and helping others do it. Through this
work we have come to value

•Individuals and interactions over processes & tools
•Working software over comprehensive
documentation

•Customer collaboration over contract negotiation
•Responding to change over following a plan
That is, while there is value in the items on the right,
we value the items on the left more.”

30

Agile lifecycle

• Embraces change as a fact of life:
continuous improvement vs. phases

• Developers continuously refine working but
incomplete prototype until customers
happy, with customer feedback on each
Iteration
(every ~2 weeks)

• Agile emphasizes Test-Driven Development
(TDD) to reduce mistakes, written down
User Stories to validate customer
requirements, Velocity to measure progress 31

Agile Iteration/
Book Organization

32

(Figure 1.4, Engineering Long Lasting
Software by Armando Fox and David
Patterson, Alpha edition, 2012.)

Waterfall has no working code until end,
Agile has working each code iteration
Waterfall uses written requirements, but
Agile does not use anything written down
Waterfall has an architectural design
phase, but you cannot incorporate SW
architecture into the Agile lifecycle

Waterfall uses long sequential phases,
Agile uses quick iterations

☐

☐

☐

☐

33

Question: What is NOT a key
difference between Waterfall and
Agile lifecycles?

Assurance:
Testing and Formal Methods

(Engineering Long Lasting Software §1.4)

David Patterson

34

Assurance

• Verification: Did you build the thing right?
– Did you meet the specification?

• Validation: Did you build the right thing?
– Is this what the customer wants?
– Is the specification correct?

• Hardware focus generally Verification
• Software focus generally Validation
• 2 options: Testing and Formal Methods

35

Assurance

• Verification: Did you build the thing right?
– Did you meet the specification?

• Validation: Did you build the right thing?
– Is this what the customer wants?
– Is the specification correct?

• Hardware focus generally____________
• Software focus generally___________
• 2 options: Testing and Formal Methods

36

Testing

• Exhaustive testing infeasible
• Divide and conquer: perform different tests

at different phases of SW development
– Upper level doesn’t redo tests of lower level

37___test: single method does what was expected
_________________test: across individual units

___________test: interfaces between units have
consistent assumptions, communicate correctly

__________________test: integrated program
meets its specifications

Testing

• Exhaustive testing infeasible
• Divide and conquer: perform different tests

at different phases of SW development
– Upper level doesn’t redo tests of lower level

38Unit test: single method does what was expected
Module or functional test: across individual units

Integration test: interfaces between units have
consistent assumptions, communicate correctly

System or acceptance test: integrated program
meets its specifications

More Testing

• Coverage: % of code paths tested
• Regression Testing: automatically rerun old

tests so changes don’t break what used to
work

• Continuous Integration Testing: continuous
regression testing vs. later phases

• Agile => Test Driven Design (TDD)
write tests before you write the code you
wish you had (tests drive coding)

39

Limits of Testing

• Program testing can be used to show the
presence of bugs, but never to show their
absence!
– Edsger W. Dijkstra

(received the 1972 Turing Award for
fundamental contributions to
developing programming languages)

40

(Photo by Hamilton Richards. Used by
permission under CC-BY-SA-3.0.)

Formal Methods

• Start with formal specification & prove
program behavior follows spec. Options:

1. Human does proof
2. Computer via automatic theorem proving

– Uses inference + logical axioms to produce
proofs from scratch

3. Computer via model checking
– Verifies selected properties by exhaustive

search of all possible states that a system
could enter during execution

41

Formal Methods

• Computationally expensive, so use only if
– Small, fixed function
– Expensive to repair, very hard to test
– E.g., Network protocols, safety critical SW

• Biggest: OS kernel 10K LOC @ $500/LOC
– NASA SW $80/LOC

• This course: rapidly changing SW, easy to
repair, easy to test => no formal methods
– Discuss again on future of engineering SW

42

While difficult to achieve, 100% test
coverage insures design reliability
Each higher level test delegates more
detailed testing to lower levels
Unit testing works within a single class
and module testing works across classes

With better test coverage, you are more
likely to catch faults

☐

☐

☐

☐

43

Question: Which statement is NOT
true about testing?

Productivity: Conciseness,
Synthesis, Reuse, and Tools

(Engineering Long Lasting Software §1.5)

David Patterson

44

Productivity

• Moore’s Law => 2X transistors/1.5 years
⇒ HW designs get bigger
⇒ Faster processors and bigger memories
⇒ SW designs get bigger
⇒ Must improve HW & SW productivity

• 4 techniques
1. Clarity via conciseness
2. Synthesis
3. Reuse
4. Automation and Tools

45

Clarity via conciseness

1. Syntax: shorter and easier to read
assert_greater_than_or_equal_to(a,7)
vs. a.should be ≥ 7

2. Raise the level of abstraction:
– HLL programming languages vs. assembly lang
– Automatic memory management (Java vs.C)
– Scripting languages: reflection,

metaprogramming

46

Clarity via conciseness

1. Syntax: shorter and easier to read
assert_greater_than_or_equal_to(a,7)
vs. ________________

2. Raise the level of abstraction:
– HLL programming languages vs. assembly lang
– Automatic memory management (Java vs.C)
– Scripting languages: reflection,

metaprogramming

47

Synthesis

• Software synthesis
– BitBlt: generate code to fit situation & remove

conditional test

• Future Research: Programming by example

48

Reuse

• Reuse old code vs. write new code
• Techniques in historical order:

1. Procedures and functions
2. Standardized libraries (reuse single task)
3. Object oriented programming: reuse and

manage collections of tasks
4. Design patterns: reuse a general strategy

even if implementation varies

49

Automation and Tools

• Replace tedious manual tasks with
automation to save time, improve accuracy
– New tool can make lives better (e.g., make)

• Concerns with new tools: Dependability, UI
quality, picking which one from several

• We think good software developer must
repeatedly learn how to use new tools
– Lots of chances in this course:

Cucumber, RSpec, Pivotal Tracker, …

50

Metaprogramming helps productivity via
program synthesis
Of the 4 productivity reasons, the primary
one for HLL is reuse
A concise syntax is more likely to have
fewer bugs and be easier to maintain

Copy and pasting code is another good
way to get reuse

☐

☐

☐

☐

51

Question: Which statement is
TRUE about productivity?

DRY

• “Every piece of knowledge must have a
single, unambiguous, authoritative
representation within a system.”
– Andy Hunt and Dave Thomas, 1999

• Don't Repeat Yourself (DRY)
– Don’t want to find many places have to apply

same repair

• Don’t copy and paste code!

52

Software as a Service (SaaS)

David Patterson

53

(Engineering Long Lasting Software §1.6)

Software as a Service: SaaS

• Traditional SW: binary code installed and
runs wholly on client device

• SaaS delivers SW & data as service over
Internet via thin program (e.g., browser)
running on client device
– Search, social networking, video

• Now also SaaS version of traditional SW
– E.g., Microsoft Office 365, TurboTax Online

54

6 Reasons for SaaS

1. No install worries about HW capability, OS
2. No worries about data loss (at remote site)
3. Easy for groups to interact with same data
4. If data is large or changed frequently,

simpler to keep 1 copy at central site
5. 1 copy of SW, controlled HW environment

=> no compatibility hassles for developers
6. 1 copy => simplifies upgrades for

developers and no user upgrade requests
55

SaaS Loves Agile & Rails

• Frequent upgrades matches Agile lifecycle
• Many frameworks for Agile/SaaS
• We use Ruby on Rails (“Rails”)
• Ruby, a modern scripting language: object

oriented, functional, automatic memory
management, dynamic types, reuse via
mix-ins, synthesis via metaprogramming

• Rails popular – e.g., Twitter

56

Cooperating group: Documents

Large/Changing Dataset: YouTube

No field upgrade when improve app:
Search

Don’t lose data: Gmail☐

☐

☐

☐

57

Which is weakest argument for a
Google app’s popularity as SaaS?

Outline

• Class Organization (AF)
• Engineering SW is Different from HW (§1.1-§1.2)
• Development Processes: Waterfall vs. Agile (§1.3)
• Assurance (§1.4)
• Productivity (§1.5)
• Software as a Service (§1.6) if time permits
• Service Oriented Architecture (§1.7) if time permits

(Next 6 slides)
• Cloud Computing (§1.8) if time permits

58

Service Oriented
Architecture(SOA)

David Patterson

59

(Engineering Long Lasting Software §1.7)

Service Oriented Architecture

• SOA: SW architecture where all
components are designed to be services

• Apps composed of interoperable services
– Easy to tailor new version for subset of users
– Also easier to recover from mistake in design

• Contrast to “SW silo” without internal APIs

60

CEO: Amazon shall use SOA!

1. “All teams will henceforth expose their data and
functionality through service interfaces

2. Teams must communicate with each other
through these interfaces

3. There will be no other form of interprocess
communication allowed: no direct linking, no
direct reads of another team's data store, no
shared-memory model, no back-doors
whatsoever. The only communication allowed is
via service interface calls over the network.

61

CEO: Amazon shall use SOA!

4. It doesn't matter what [API protocol] technology
you use.

5. Service interfaces, without exception, must be
designed from the ground up to be
externalizable. That is to say, the team must plan
and design to be able to expose the interface to
developers in the outside world. No exceptions.

6. Anyone who doesn't do this will be fired.
7. Thank you; have a nice day!”

62

Bookstore: Silo

63

• Internal subsystems
can share data
directly
– Review access user

profile

• All subsystems
inside single API
(“Bookstore”)

(Figure 1.2, Engineering Long Lasting
Software by Armando Fox and David
Patterson, Alpha edition, 2012.)

64

Bookstore: SOA

• Subsystems
independent,
as if in separate
datacenters
– Review Service

access User
Service API

• Can recombine
to make new
service (“Favorite
Books”)

(Figure 1.3, Engineering Long Lasting
Software by Armando Fox and David
Patterson, Alpha edition, 2012.)

Security can be harder with SOA

SOA improves developer productivity
primarily through reuse
No service can name or access another
service's data; it can only make requests
for data thru an external API

Debugging is easier with SOA☐

☐

☐

☐

65

Which statements NOT true about
SOA?

Cloud Computing, Fallacies and
Pitfalls, and End of Chapter 1

David Patterson

66

(Engineering Long Lasting Software §§1.8, 1.9, 1.12)

SaaS Infrastructure?

• SaaS demands on infrastructure
1. Communication: allow customers to interact

with service
2. Scalability: fluctuations in demand during +

new services to add users rapidly
3. Dependability: service and communication

continuously available 24x7

67

Clusters

• Clusters: Commodity computers connected
by commodity Ethernet switches

1. More scalable than conventional servers
2. Much cheaper than conventional servers

– 20X for equivalent vs. largest servers

3. Few operators for 1000s servers
– Careful selection of identical HW/SW
– Virtual Machine Monitors simplify operation

4. Dependability via extensive redundancy

68

Warehouse Scale Computers

• Economies of scale pushed down cost of
largest datacenter by factors 3X to 8X
– Purchase, house, operate 100K v. 1K computers

• Traditional datacenters utilized 10% - 20%
• Make profit offering pay-as-you-go use at

less than your costs for as many computers
as you need

69

Utility Computing /
Public Cloud Computing

• Offers computing, storage, communication
at pennies per hour +

• No premium to scale:
 1000 computers @ 1 hour

= 1 computer @ 1000 hours

• Illusion of infinite scalability to cloud user
– As many computers as you can afford

• Leading examples: Amazon Web Services,
Google App Engine, Microsoft Azure

70

2012 AWS Instances & Prices

71

Instance Per Hour
Ratio

to
Small

Compute
Units

Virtual
Cores

Compute
Unit/ Core

Memory
(GB)

Disk
(GB) Address

Standard Small $0.085 1.0 1.0 1 1.00 1.7 160 32 bit
Standard Large $0.340 4.0 4.0 2 2.00 7.5 850 64 bit
Standard Extra Large $0.680 8.0 8.0 4 2.00 15.0 1690 64 bit
High-Memory Extra Large $0.500 5.9 6.5 2 3.25 17.1 420 64 bit
High-Memory Double Extra Large $1.200 14.1 13.0 4 3.25 34.2 850 64 bit
High-Memory Quadruple Extra Large $2.400 28.2 26.0 8 3.25 68.4 1690 64 bit
High-CPU Medium $0.170 2.0 5.0 2 2.50 1.7 350 32 bit
High-CPU Extra Large $0.680 8.0 20.0 8 2.50 7.0 1690 64 bit
Cluster Quadruple Extra Large $1.300 15.3 33.5 16 2.09 23.0 1690 64 bit
Eight Extra Large $2.400 28.2 88.0 32 2.75 60.5 1690 64 bit

Supercomputer for hire

• Top 500 supercomputer competition
• 290 Eight Extra Large (@ $2.40/hour)

= 240 TeraFLOPS
• 42nd/500 supercomputer @ ~$700 per hour
• Credit card => can use 1000s computers
• FarmVille on AWS

– Prior biggest online game 5M users
– What if startup had to build datacenter?
– 4 days =1M; 2 months = 10M; 9 months = 75M

72

IBM Watson for Hire?

• Jeopardy Champion IBM Watson
• Hardware: 90 IBM Power 750 servers

– 3.5 GHz 8 cores/server

• 90 @~$2.40/hour = ~$200/hour
• Cost of human lawyer or account
• For what tasks could AI be as good as

highly trained person @ $200/hour?
• What would this mean for society?

73

The Internet supplies the communication
for SaaS
Cloud computing uses HW clusters + SW
layer using redundancy for dependability
Private datacenters could match cost of
Warehouse Scale Computers if they just
purchased the same type of hardware

Clusters are collections of commodity
servers connected by LAN switches

☐

☐

☐

☐

74

Which statements NOT true about
SaaS, SOA, and Cloud Computing?

Fallacies and Pitfalls

• Fallacy: If a software project is falling behind
schedule, catch up by adding people
– Adding people actual makes it worse!

1. Time for new people to learn about project
2. Communication increases as project grows,

which reduces time available get work done

“Adding manpower to a late software
project makes it later.”
Fred Brooks, Jr. The Mythical Man Month

75

Fallacies and Pitfalls

• Pitfall: Ignoring the cost of software design
– Since ≈0 cost to manufacture software, might

believe ≈0 cost to remanufacture the way the
customer wants

– Ignores the cost of design and test

• (Is cost ~no cost of manufacturing
software/data same rationale to pirate data?
No one should pay for development, just for
manufacturing?)

76

Summary: Engineering SW is
More Than Programming

• Long-lasting, evolvable SW vs. short life of
HW led to different development processes

77

(Figure 1.6, Engineering Long
Lasting Software by Armando Fox
and David Patterson,
Alpha edition, 2012.)

