
CS 169 Software Engineering
SaaS Architecture

Armando Fox, David Patterson, and
Koushik Sen
Spring 2012

1

Outline and § ELLS sections

From 100,000 foot view to 500 foot view of SaaS
• Client-server architecture, HTTP, URIs, cookies

(§2.1-2.2)
• HTML & CSS, XML & XPath (§2.2-2.3)
• 3-tier shared-nothing architecture, horizontal

scaling (§2.4)
• model-view-controller design pattern (§2.5)

– Models: ActiveRecord & CRUD (§2.6)
– Routes, controllers, and REST (§2.7)
– Template views (§2.8)

• Fallacies & pitfalls, perspectives (§2.9-2.12)
• Patterns, architecture, & perspective (§2.10)

2

The Web as a Client-Server
System; TCP/IP intro

ELLS §2.1–2.2
Armando Fox

3

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

Reminder

• This material expands on
and gives additional
perspectives/demos about
the material in ELLS

• We assume you will watch
the screencasts too
(screencast.saasbook.info)

• It does not replace reading
that material

4

http://saasbook.info

Web at 100,000 feet

• The web is a client/server architecture
• It is fundamentally request/reply oriented

Web browser Web site
Internet

6

Client-Server vs. Peer-to-Peer

• High-level architecture of the overall system
– Soon we’ll talk about architecture “inside” boxes

• Client & server each specialized for their tasks
– Client: ask questions on behalf of users
– Server: wait for & respond to questions, serve many clients

• Design Patterns capture common structural solutions to
recurring problems
– Client-Server is an architectural pattern

7

C

C

C

C

S
P

P
P

P P

P

GET /bears/

Nuts and bolts:
TCP/IP protocols

• IP (Internet Protocol) address identifies a physical network
interface with four octets, e.g. 128.32.244.172

– Special address 127.0.0.1 is “this computer”, named localhost,
even if not connected to the Internet!

• TCP/IP (Transmission Control Protocol/Internet Protocol)
– IP: no-guarantee, best-effort service that delivers packets from one IP

address to another
– TCP: make IP reliable by detecting “dropped” packets, data arriving out of

order, transmission errors, slow networks, etc., and respond appropriately
– TCP ports allow multiple TCP apps on same computer

• Vint Cerf & Bob Kahn: 2004 Turing Award for
Internet architecture & protocols, incl. TCP/IP

GET /bears/

HTTP/0.9 200 OKHTTP/0.9 200 OK

Web at 100,000 feet

• The web is a client/server architecture
• It is fundamentally request/reply oriented
• Domain Name System (DNS) is another kind of

server that maps names to IP addresses

Web browser Web site

DNS server

Now that we’re talking, what do we say?
Hypertext Transfer Protocol

• an ASCII-based request/reply protocol for
transferring information on the Web

• HTTP request includes:
– request method (GET, POST, etc.)
– Uniform Resource Identifier (URI)
– HTTP protocol version understood by the client
– headers—extra info regarding transfer request

• HTTP response from server
– Protocol version & Status code =>
– Response headers
– Response body

HTTP status codes:
2xx — all is well
3xx — resource moved
4xx — access problem
5xx — server error

HTTP > TCP > IP

TCP > DNS

All the above are correct

DNS > IP☐

☐

☐

☐

11

Assuming “>” means “relies on”,
which statement is NOT correct:

Cookies

• Observation: HTTP is stateless
• Early Web 1.0 problem: how to guide a user

“through” a flow of pages?
– use IP address to identify returning user?
✖ public computers, users sharing single IP

– embed per-user junk into URI query string?
✖ breaks caching

• Quickly superseded by cookies
– Watch: screencast.saasbook.info

Uses of cookies

• Most sites quickly realized that the
per-user state could be used for lots of
things:
– customization (“My Yahoo”)
– click tracking/flow tracking
– authentication (logged in or not)
– Which of these could be implemented on the

client side? Which ones shouldn’t be and why?

• A golden rule: don’t trust the
client—cookies must be tamper-evident

SaaS app; browser

HTTP request; browser

SaaS app; HTTP response

Browser; SaaS app☐

☐

☐

☐

14

A ____ can create and modify cookies;
the ____ is responsible for including the
correct cookie with each request

HTML+CSS

ELLS §2.3
Armando Fox

15

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

16

CS 142 Lecture Notes:
HTML

Slide 17

Introduction
This article is a review of the book
Dietary Preferences of Penguins,
by Alice Jones and Bill Smith. Jones
and Smith's controversial work makes
three hard-to-swallow claims about
penguins:
First, that penguins actually prefer
tropical foods such as bananas and
pineapple to their traditional diet
of fish
Second, that tropical foods give
penguins an odor that makes them
unattractive to their traditional
predators

CS 142 Lecture Notes:
HTML

Slide 18

<h1>Introduction</h1>
<p>
 This article is a review of the book
 <i>Dietary Preferences of Penguins</i>,
 by Alice Jones and Bill Smith. Jones and Smith's
 controversial work makes three hard-to-swallow claims
 about penguins:
</p>

 First, that penguins actually prefer tropical foods
 such as bananas and pineapple to their traditional diet
 of fish

 Second, that tropical foods give penguins an odor that
 makes them unattractive to their traditional predators

...

CS 142 Lecture Notes:
HTML

Slide 19

<h1>Introduction</h1>
<p>
This article is a review of the book
<i>Dietary Preferences of Penguins</i>,
by Alice Jones and Bill Smith. Jones
and Smith's controversial work makes
three hard-to-swallow claims about
penguins:

First, ...

Introduction
This article is a review of the book Dietary Preferences of
Penguins, by Alice Jones and Bill Smith. Jones and Smith's
controversial work makes two hard-to-swallow claims about
penguins:

● First, that penguins actually prefer tropical foods such
as bananas and pineapple to their traditional diet of fish

● Second, that tropical foods give penguins an odor that
makes them unattractive to their traditional predators

...

HTML ~1.0

• Descendant of IBM’s Generalized Markup
Language (1960’s) via SGML (Standard
Generalized Markup Language, 1986)

• Document = Hierarchical collection of elements
– inline (headings, tables, lists...)
– embedded (images, JavaScript code...)
– forms—allow user to submit simple input (text,

radio/check buttons, dropdown menus...)
• Each element can have attributes (many optional)

and some elements also have content
– of particular interest: id and class attributes, for styling

Cascading Style Sheets

• Idea: visual appearance of page described
in a separate document (stylesheet)
– accessibility
– branding/targeting
– separate designers’ & developers’ concerns

• Current best practice: HTML markup should
contain no visual styling information

How does it work?

• <link rel="stylesheet" href="http://..."/> (inside
<head> element) says what stylesheet goes
with this HTML page

• HTML id & class attributes important in CSS
– id must be unique within this page
– same class can be attached to many elements
 <div id="right" class="content">
 <p>
 I'm Armando. I teach CS169 and do
 research in the AMP Lab and Par Lab.
 </p>
 </div>

Selectors identify specific tag(s)

 <div class="pageFrame" id="pageHead">
 <h1>
 Welcome,
 Armando

 </h1>
</div>

• tag name: h1
• class name: .pageFrame
• element ID: #pageHead
• tag name & class: div.pageFrame
• tag name & id: img#welcome (usually redundant)
• descendant relationship: div .custName
• Attributes inherit browser defaults unless overridden

both of these match the outer
div above. Don’t do this!

p .a

.a span

All of these

span.a☐

☐

☐

☐

24

Which CSS selector will select only the
word “bar” for styling:
<p class="a">foo,
 bar</p>

3-tier shared-nothing
architecture & scaling

ELLS §2.4
Armando Fox

25

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

26

Dynamic content generation

• In the Elder Days, most web pages were
(collections of) plain old files

• But most interesting Web 1.0/e-commerce
sites actually run a program to generate the
“page”

• Originally: templates with embedded code
“snippets”

• Eventually, code became “tail that wagged
the dog” and moved out of the Web server

Sites that are really programs
(SaaS)

• How do you:
– “map” URI to correct program

& function?
– pass arguments?
– invoke program on server?
– handle persistent storage?
– handle cookies?
– handle errors?
– package output back to user?

• Frameworks support these
common tasks

presentation (Web
server)

your app

Common Gateway
Interface (CGI)

Filesystem
or database persistence

logic (app)

client (browser)

Developer environment vs.
medium-scale deployment

Webrick

rack

SQLite
adapter

Rails
library

file.sqlite3

Developer

MySQL

thin

rack

MySQL
adapter

Rails
library

thin

rack

MySQL
adapter

Rails
library

thin

rack

MySQL
adapter

Rails
library

Apache
w/mod_rails +
caching mode

Page
cache

Medium-scale deployment

HTTP servers &
static asset caches

PostgreSQL
Database

cache

“Dynos”
running
apps

Large-scale curated
deployment, e.g. Heroku

“Shared nothing”

30

Sharding vs. Replication

• Partition data across
independent “shards”?
+ Scales great
– Bad when operations touch >1

table
– Example use: user profile

• Replicate all data everywhere?
+ Multi-table queries fast
– Hard to scale: writes must

propagate to all copies =>
temporary inconsistency in data
values

– Example: Facebook wall
posts/“likes”

31

users A-J

users K-R

users S-Z

App
server

App
server

App
server

All users

All users

All users

App
server

App
server

App
server

Summary: Web 1.0 SaaS

• Browser requests web resource (URI) using HTTP
– HTTP is a simple request-reply protocol that relies on TCP/IP
– In SaaS, most URI’s cause a program to be run, rather than a

static file to be fetched

• HTML is used to encode content, CSS to style it visually
• Cookies allow server to track client

– Browser automatically passes cookie to server on each request
– Server may change cookie on each response
– Typical usage: cookie includes a handle to server-side information
– That’s why some sites don’t work if cookies are completely

disabled

• Frameworks make all these abstractions convenient for
programmers to use, without sweating the details

• ...and help map SaaS to 3-tier, shared-nothing architecture

(a) Firefox (b) Apache web server
(c) PostgreSQL
(a) Microsoft Internet Information Server
(b) Rack+Rails (c) Apache web server
(a) Firefox (b) Microsoft Internet
Information Server (c) MySQL

(a) Apache web server (b) Rack+Rails
(c) Relational database

☐

☐

☐

☐

33

Match the terms:
(a) presentation tier, (b) logic tier,
(c) persistence tier

Model-View-Controller

ELLS §2.5
Armando Fox

34

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

35

The MVC Design Pattern

• Goal: separate organization of data (model) from UI & presentation
(view) by introducing controller
– mediates user actions requesting access to data
– presents data for rendering by the view

• Web apps may seem “obviously” MVC by design, but other
alternatives are possible...

Controller• User actions
• Directives for
rendering data

• Read data
• Update data

• Data provided to views
through controller

ModelView

Each entity has a model,
controller, & set of views

37

Moviegoe
rs

Controller

Moviegoer

Reviews
Controlle

r

Review

Movies
Controlle

r

Movie

Alternatives to MVC

38

Rails supports SaaS apps structured as MVC, but
other architectures may be better fit for some apps.

Page Controller
(Ruby Sinatra)

page A A

page B

page C

B

C

models

Front Controller
(J2EE servlet)

app

models

views

Template View
(PHP)

models

views

All MVC apps have both a “client” part (e.g. Web
browser) and a “cloud” part (e.g. Rails app on cloud).

Model-View-Controller is just one of several
possible ways to structure a SaaS app.

Peer-to-peer apps can be structured as
Model-View-Controller.

In SaaS apps on the Web, controller actions
and view contents are transmitted using HTTP.

☐

☐

☐

☐

39

Which statement is NOT true
about the Model-View-Controller
(MVC) architectural pattern:

Models, Databases, and
Active Record

ELLS §2.6
Armando Fox

40

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

41

In-Memory vs. In-Storage
objects

• How to represent persisted object in
storage
– Example: Movie and Reviews

• Basic operations on object: CRUD (Create,
Read, Update, Delete)

• ActiveRecord: every model knows how to
CRUD itself, using common mechanisms

42

#<Movie:0x1295580>
m.name, m.rating, ...

?
marshal/serialize

unmarshal/deserialize#<Movie:0x32ffe416>
m.name, m.rating, ...

Rails Models Store Data in
Relational Databases (RDBMS)

• Each type of model gets its own database table
– All rows in table have identical structure
– 1 row in table == one model instance
– Each column stores value of an attribute of the model
– Each row has unique value for primary key (by

convention, in Rails this is an integer and is called id)

• Schema: Collection of all tables and their structure

id rating title release_date

2 G Gone With the Wind 1939-12-15

11 PG Casablanca 1942-11-26

...

35 PG Star Wars 1977-05-25

Alternative: DataMapper

• Data Mapper associates separate mapper with
each model
– Idea: keep mapping independent of particular data

store used => works with more types of databases
– Used by Google AppEngine
– Con: can’t exploit

RDBMS features to
simplify complex
queries & relationships

• We’ll revisit when
talking about
associations

44

Part of the Model’s job is to convert between
in-memory and stored representations of
objects.Although Model data is displayed by the View,
a Models’ direct interaction is with Controllers.

Although DataMapper doesn’t use relational
databases, it’s a valid way to implement a Model.

The CRUD actions only apply to models backed by
a database that supports ActiveRecord.

☐

☐

☐

☐

45

Which statement is not true about the
Model in Model-View-Controller:

Controllers, Routes, and
RESTfulness

ELLS §2.7
Armando Fox

46

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

47

Routes

• In MVC, each interaction the user can do is
handled by a controller action
– Ruby method that handles that interaction

• A route maps <HTTP method, URI> to
controller action

•

48

Route Action

GET /movies/3 Show info about movie whose ID=3

POST /movies Create new movie from attached form data

PUT /movies/5 Update movie ID 5 from attached form data

DELETE /movies/5 Delete movie whose ID=5

Brief Intro to Rails’ Routing
Subsystem

• dispatch <method,URI> to correct controller
action

• provides helper methods that generate a
<method,URI> pair given a controller action

• parses query parameters from both URI and form
submission into a convenient hash

• Built-in shortcuts to generate all CRUD routes
(though most apps will also have other routes)

49

I GET /movies {:action=>"index", :controller=>"movies"}
C POST /movies {:action=>"create", :controller=>"movies"}
 GET /movies/new {:action=>"new", :controller=>"movies"}
 GET /movies/:id/edit {:action=>"edit", :controller=>"movies"}
R GET /movies/:id {:action=>"show", :controller=>"movies"}
U PUT /movies/:id {:action=>"update", :controller=>"movies"}
D DELETE /movies/:id {:action=>"destroy", :controller=>"movies"}

 rake routes

GET /movies/3/edit HTTP/1.0

• Matches route:
GET /movies/:id/edit {:action=>"edit", :controller=>"movies"}

• Parse wildcard parameters: params[:id] = "3"
• Dispatch to edit method in movies_controller.rb
• To include a URI in generated view that will submit the form

to the update controller action with params[:id]==3, call
helper:
 update_movie_path(3) # => PUT /movies/3

50

I GET /movies {:action=>"index", :controller=>"movies"}
C POST /movies {:action=>"create", :controller=>"movies"}
 GET /movies/new {:action=>"new", :controller=>"movies"}
 GET /movies/:id/edit {:action=>"edit", :controller=>"movies"}
R GET /movies/:id {:action=>"show", :controller=>"movies"}
U PUT /movies/:id {:action=>"update", :controller=>"movies"}
D DELETE /movies/:id {:action=>"destroy", :controller=>"movies"}

 rake routes

REST (Representational State
Transfer)

• Idea: Self-contained requests specify what
resource to operate on and what to do to it
– Roy Fielding’s PhD thesis, 2000
– Wikipedia: “a post hoc description of the

features that made the Web successful”

• A service (in the SOA sense) whose
operations are like this is a RESTful service

• Ideally, RESTful URIs name the operations
• Let’s see an anti-example:

http://pastebin.com/edF2
NzCF

Every route must eventually trigger a controller
action.

One common set of RESTful actions is the
CRUD actions on models.

The route always contains one or more
parameters, such as :id, to identify the resource

A resource may be existing content or a request
to modify something.

☐

☐

☐

☐

52

Which statement is NOT true regarding
Rails RESTful routes and the resources
to which they refer:

Template Views and Haml

ELLS §2.8
Armando Fox

53

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

54

Template View pattern

• View consists of markup with selected
interpolation to happen at runtime
– Usually, values of variables or result of

evaluating short bits of code

• In Elder Days, this was the app (e.g. PHP)
• Alternative: Transform View

55

Haml
Closure

Renderer
(Action-Vi

ew)

HTML

RJS
(remote
Java-Sc

ript)

erb

Closure

MovieMovieMovie

Renderer
(Action-Vi

ew)

XML

JSON

Haml is HTML on a diet

%h1.pagename All Movies
%table#movies
 %thead
 %tr
 %th Movie Title
 %th Release Date
 %th More Info
 %tbody
 - @movies.each do |movie|
 %tr
 %td= movie.title
 %td= movie.release_date
 %td= link_to "More on #{movie.title}", |
 movie_path(movie) |

= link_to 'Add new movie', new_movie_path

56

Don’t put code in your views

• Syntactically, you can put any code in view
• But MVC advocates thin views & controllers

– Haml makes deliberately awkward to put in lots
of code

• Helpers (methods that “prettify” objects for
including in views) have their own place in
Rails app

• Alternative to Haml: html.erb (Embedded
Ruby) templates, look more like PHP

57

It will work when developing against a
“toy” database, but not in production
It won’t work, because Views can’t
communicate directly with Models
Behavior varies depending on the app

It will work, but it’s bad form and violates
the MVC guidelines

☐

☐

☐

☐

58

What happens if you embed code in
your Rails views that directly accesses
the model?

Summary & Reflections:
 SaaS Architecture

Armando Fox

59

© 2012 Armando Fox & David Patterson
Licensed under Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License

The big picture (technologies)

Controller

View Model

• URI’s, HTTP, TCP/IP stack
• REST & RESTful routes

• Databases & migrations
• CRUD• HTML & CSS

• XML & XPath

c. 2008: “Rails doesn’t scale”

• Scalability is an architectural concern—not
confined to language or framework

• The stateless tiers of 3-tier arch do scale
– With cloud computing, just worry about constants

• Traditional relational databases do not scale
• Various solutions combining relational and

non-relational storage (“NoSQL”) scale much
better
– DataMapper works well with some of them

• Intelligent use of caching (later in course) can
greatly improve the constant factors

61

Frameworks, Apps, Design
patterns

• Many design patterns so far, more to come
• In 1995, it was the wild west: biggest Web

sites were minicomputers, not 3-tier/cloud
• Best practices (patterns) “extracted” from

experience and captured in frameworks
• But API’s transcended it: 1969 protocols +

1960s markup language + 1990 browser +
1992 Web server works in 2011

62

Architecture is about
Alternatives

Pattern we’re using Alternatives

Client-Server Peer-to-Peer

Shared-nothing (cloud computing) Symmetric multiprocessor, shared
global address space

Model-View-Controller Page controller, Front controller,
Template view

Active Record Data Mapper

RESTful URIs (all state affecting request
is explicit)

Same URI does different things
depending on internal state

63

As you work on other SaaS apps beyond this course, you
should find yourself considering different architectural

choices and questioning the choices being made.

Summary: Architecture & Rails

• Model-view-controller is a well known
architectural pattern for structuring apps

• Rails codifies SaaS app structure as MVC
• Views are Haml w/embedded Ruby code,

transformed to HTML when sent to browser
• Models are stored in tables of a relational

database, accessed using ActiveRecord
• Controllers tie views and models together

via routes and code in controller methods

Relational databases scale better than
“NoSQL” databases
The programming language used (Ruby,
Java, etc.) isn’t a main factor in scalability
Scalability can be impeded by any part
of the app that becomes a bottleneck

Shared-nothing clusters scale better
than systems built from mainframes

☐

☐

☐

☐

65

Other factors being equal, which
statement is NOT true regarding SaaS
scalability?

