Power Converter Systems

Graduate Course EE8407

Bin Wu PhD, PEng

Professor ELCE Department Ryerson University

Contact Info Office: ENG328 Tel: (416) 979-5000 ext: 6484 Email: bwu@ee.ryerson.ca http://www.ee.ryerson.ca/~bwu/

Ryerson Campus

Topic 5

Two-Level Voltage Source Inverter (VSI)

VDM5000 Two-level VSI

Two Level Voltage Source Inverter

Lecture Topics

- Sinusoidal PWM
- Space vector modulation

Why Use PWM Techniques?

- To control inverter output frequency (fundamental)
- To control inverter output voltage (fundamental)
- To minimize harmonic distortion

Inverter Configuration

Assumption: dc capacitor very large \rightarrow dc voltage ripple free

• Modulating and Carrier Waves

- V_{cr} Carrier wave (triangle)
- Amplitude modulation index

$$m_{a} = \frac{\hat{V}_{m}}{\hat{V}_{cr}}$$

- V_m Modulating wave (sine)
- Frequency modulation index

$$m_f = \frac{f_{cr}}{f_m}$$

Gate Signal Generation

Phase A	$v_{mA} > v_{cr}$	$v_{g1} > 0 (v_{g4} < 0)$	S_1 on $(S_4 \text{ off})$	$v_{AN} = V_d$
	$v_{mA} < v_{cr}$	$v_{g4} > 0 \ (v_{g1} < 0)$	S_4 on $(S_1 \text{ off})$	$v_{AN} = 0$

V_{g1} and V_{g4} are complementary

Topic 5

Sinusoidal PWM

• Line-to-Line Voltage V_{AB}

Topic 5

Sinusoidal PWM

Harmonic Content

• Third Harmonic Injection PWM

- $\hat{V}_{m1} > \hat{V}_{cr}$ undamental voltage increased
- $\hat{V}_{mA} \ll \hat{W}_{cr}$ low order harmonics produced
- 3^{rd} harmonic zero sequence (to appear in V_{AN} and V_{BN})
- No triplen harmonics in $v_{AB} (v_{AB} = v_{AN} v_{BN})$

Space Vector Modulation

Switching States

Switching	Leg A			Leg B			Leg C		
State	S_1	S_4	V_{AN}	S_3	S_6	V_{BN}	S_5	S_2	V_{CN}
Р	On	Off	V_d	On	Off	V _d	On	Off	V_d
0	Off	On	0	Off	On	0	Off	On	0

Space Vector Modulation

• Switching States (Three-Phase)

Switching State (Three Phases)	On-state Switch
[PPP]	S_1, S_3, S_5
[000]	S_4, S_6, S_2
[POO]	S_1, S_6, S_2
[PPO]	S_1, S_3, S_2
[OPO]	S_4, S_3, S_2
[OPP]	S_4, S_3, S_5
[OOP]	S_4, S_6, S_5
[POP]	S_1, S_6, S_5

• Eight switching states

Topic 5

Space Vector Modulation

Space Vector Diagram

Space Vectors

Three-phase voltages

$$v_{AO}(t) + v_{BO}(t) + v_{CO}(t) = 0$$
⁽¹⁾

Two-phase voltages

$$\begin{bmatrix} v_{\alpha}(t) \\ v_{\beta}(t) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos 0 & \cos \frac{2\pi}{3} & \cos \frac{4\pi}{3} \\ \sin 0 & \sin \frac{2\pi}{3} & \sin \frac{4\pi}{3} \end{bmatrix} \begin{bmatrix} v_{AO}(t) \\ v_{BO}(t) \\ v_{CO}(t) \end{bmatrix}$$
(2)

$$V = v_{\alpha}(t) + j v_{\beta}(t)$$
(3)

$$(2) \rightarrow (3)$$

$$V(t) = \frac{2}{3} \left[v_{AO}(t) e^{j0} + v_{BO}(t) e^{j2\pi/3} + v_{CO}(t) e^{j4\pi/3} \right]$$
(4)

where $e^{jx} = \cos x + j \sin x$

Space Vectors (Example)

Switching state [POO] \rightarrow S₁, S₆ and S₂ ON $v_{AO}(t) = \frac{2}{3}V_d, v_{BO}(t) = -\frac{1}{3}V_d$ and $v_{CO}(t) = -\frac{1}{3}V_d$ (5) $\begin{array}{c} \overset{\boxtimes}{V_3} \qquad j\beta \\ 0 PO/\mathbf{k} \qquad \bullet \end{array}$ **(5)** → **(4)** $\overset{\boxtimes}{V_1} = \frac{2}{3} V_d \ e^{j0}$ SECTOR (6) Π **SECTOR III SECTOR I** N V ref ωĽ \square Similarly, V_4^{\bowtie} V_1 θ • α PPP 000 OPP POO $V_{k} = \frac{2}{3} V_{d} e^{j(k-1)\frac{\pi}{3}}$ V_0 (7) **SECTOR IV SECTOR VI** SECTOR V $k = 1, 2, \dots, 6.$ OOP⊵ POP \vec{V}_{6} \bar{V}_{z}

Space Vector Modulation

Active and Zero Vectors

- Active Vector: 6
- Zero Vector: 1
- Redundant switching states: [PPP] and [OOO]

Space Vector		Switching State (Three Phases)	On-state Switch	Vector Definition	
Zero		[PPP]	S_1, S_3, S_5	$\overset{\boxtimes}{V}$ - 0	
Vector	^V 0	[000]	S_4, S_6, S_2	v ₀ = 0	
Active Vector	V_1	[POO]	S_1, S_6, S_2	$\bigvee_{1}^{\boxed{M}} = \frac{2}{3} V_d e^{j0}$	
	V_2^{\bowtie}	[PPO]	S_1, S_3, S_2	$\overset{\mathbb{N}}{V_2} = \frac{2}{3} V_d e^{j\frac{\pi}{3}}$	
	V_3^{\bowtie}	[OPO]	S_{4}, S_{3}, S_{2}	$ \overset{\mathbb{N}}{V_{3}} = \frac{2}{3} V_{d} e^{j\frac{2\pi}{3}} $	
	V_4^{\bowtie}	[OPP]	S_{4}, S_{3}, S_{5}	$ \overset{\mathbb{N}}{V_4} = \frac{2}{3} V_d e^{j\frac{3\pi}{3}} $	
	v_5	[OOP]	S_{4}, S_{6}, S_{5}	$ \overset{}{V_5} = \frac{2}{3} V_d e^{j\frac{4\pi}{3}} $	
	${\mathbb N}_{6}$	[POP]	S_{1}, S_{6}, S_{5}	$ \overset{\mathbb{N}}{V_{6}} = \frac{2}{3} V_{d} e^{j\frac{5\pi}{3}} $	

Space Vector Modulation

- Reference Vector V_{ref}
 - Definition

 $V_{ref}^{\scriptscriptstyle {
m \tiny M}} = V_{ref} \; e^{j\theta}$

- Rotating in space at ω
 - $\omega = 2\pi f \tag{8}$
- Angular displacement

$$\theta(t) = \int_0^t \omega \, dt \quad (9)$$

• Relationship Between V_{ref} and V_{AB}

- V_{ref} is approximated by two active and a zero vectors
- V_{ref} rotates one revolution, V_{AB} completes one cycle
- Length of V_{ref} corresponds to magnitude of V_{AB}

Space Vector Modulation

- Dwell Time Calculation
 - Volt-Second Balancing

$$\begin{cases} V_{ref} T_s = V_1 T_a + V_2 T_b + V_0 T_0 \\ T_s = T_a + T_b + T_0 \end{cases}$$
(10)

• T_a , T_b and T_0 – dwell times for V_1^{\Box} , V_2^{\Box} and V_0^{\Box}

- T_s sampling period
- Space vectors

$$\overset{\mathbb{M}}{V_{ref}} = V_{ref} e^{j\theta}, \quad \overset{\mathbb{M}}{V_{1}} = \frac{2}{3} V_{d} \quad , \quad \overset{\mathbb{M}}{V_{2}} = \frac{2}{3} V_{d} e^{j\frac{\pi}{3}} \quad \text{and} \quad \overset{\mathbb{M}}{V_{0}} = 0 \quad (11)$$

$$\begin{cases}
\mathbf{Re:} \quad V_{ref} (\cos \theta) T_{s} = \frac{2}{3} V_{d} T_{a} + \frac{1}{3} V_{d} T_{b} \\
\mathbf{Im:} \quad V_{ref} (\sin \theta) T_{s} = \frac{1}{\sqrt{3}} V_{d} T_{b}
\end{cases}$$

$$(12)$$

• **Dwell Times**

Solve (12)

$$\begin{cases} T_{a} = \frac{\sqrt{3}T_{s}V_{ref}}{V_{d}}\sin\left(\frac{\pi}{3}-\theta\right) \\ T_{b} = \frac{\sqrt{3}T_{s}V_{ref}}{V_{d}}\sin\theta \qquad 0 \le \theta < \pi/3 \qquad (13) \\ T_{0} = T_{s} - T_{a} - T_{b} \end{cases}$$

Space Vector Modulation

Modulation Index

$$\begin{cases} T_a = T_s m_a \sin\left(\frac{\pi}{3} - \theta\right) \\ T_b = T_s m_a \sin\theta \\ T_0 = T_s - T_b - T_c \end{cases}$$
(15)

$$m_a = \frac{\sqrt{3} V_{ref}}{V_d}$$

(16)

Topic 5

Space Vector Modulation

Modulation Range

• Modulation range: $0 \le m_a \le 1$ (18)

- Switching Sequence Design
 - Basic Requirement:

Minimize the number of switchings per sampling period T_s

• Implementation:

Transition from one switching state to the next involves only two switches in the same inverter leg.

Space Vector Modulation

Seven-segment Switching Sequence

• Total number of switchings: 6

Undesirable Switching Sequence

• Vectors V_1 and V_2 swapped

Total number of switchings: 10

• Switching Sequence Summary (7–segments)

Sector	Switching Sequence							
Ι	V_0	V_1	V_2	V_0	V_2	V_1	V_0	
	OQO	PQO	P₽O	P₽P	PPO	PQO	OÕO	
п	V_0	V_3	V_2	V_0	V_2^{\boxtimes}	V_3	V_0^{\boxtimes}	
	OQO	OPO	P₽O	PPP	PPO	OPO	OÕO	
III	V_0^{\boxtimes}	V_3	V_4	V_0	V_4	V_3	V_0^{\boxtimes}	
	OQO	OPO	OPP	PPP	OPP	OPO	OÕO	
IV	V_0^{\boxtimes}	V_5	V_4	V_0	V_4	V_5	V_0^{\boxtimes}	
1,	OQO	OQP	OPP	PPP	OPP	OQP	OQO	
V	V_0	V_5	V_6	V_0	V_6	V_5	V_0^{\boxtimes}	
·	OQO	OQP	PQP	P₽P	PQP	OQP	OQO	
VI	V_0	V_1	V_6	V_0	V_6	V_1	V_0	
* 1	000	POO	POP	PPP	POP	POO	000	

Note: The switching sequences for the odd and ever sectors are different.

Simulated Waveforms

Space Vector Modulation

Waveforms and FFT

Space Vector Modulation

• Waveforms and FFT (Measured)

Topic 5

Space Vector Modulation

• Waveforms and FFT (Measured)

Space Vector Modulation

Even-Order Harmonic Elimination

Type-A sequence (starts and ends with [OOO]) Type-B sequence (starts and ends with [PPP])

Even-Order Harmonic Elimination

Space vector Diagram

Space Vector Modulation

Even-Order Harmonic Elimination

Measured waveforms and FFT

• Even-Order Harmonic Elimination

Topic 5

Space Vector Modulation

Five-segment SVM

• Switching Sequence (5-segment)

Sector	Switching Sequence (A)						
I	V_0	V_1^{\otimes}	V_2	V_1^{\otimes}	V_0	$v_{cm} = 0$	
1	ogo	PQO	PPO	PQO	ogo	CIV	
II	V_0	V_3	V_2	V_3	V_0	$v_{CM} = 0$	
	OQO	OPO	PPO	OPO	ogo	CIV	
	V_0	V_3	V_4	V_3	V_0	$v_{AV} = 0$	
	OQO	OPO	OPP	OPO	ogo	ΑIV	
IV	V_0^{\boxtimes}	V_5	V_4	V_5	V_0^{\boxtimes}	$v_{AV} = 0$	
17	ogo	OQP	OPP	OQP	ogo	AIV	
V	V_0	V_5	V_6	V_5	V_0	$v_{\text{PM}} = 0$	
,	OQO	OQP	PQP	OQP	ogo	717	
VI	V_0	V_1^{\otimes}	V_6	V_1	V_0	$v_{TM} = 0$	
<i>7</i> 1	000	POO	POP	POO	000	אזס	

Space Vector Modulation

• Simulated Waveforms (5-segment)

• $f_1 = 60$ Hz, $f_{sw} = 600$ Hz, $m_a = 0.696$, $T_s = 1.1$ ms

- No switching for a 120° period per cycle.
- Low switching frequency but high harmonic distortion

RYERSON UNIVERSITY

Thanks