Power Converter Systems

Graduate Course EE8407

Bin Wu PhD, PEng

Professor ELCE Department Ryerson University

Contact Info Office: ENG328 Tel: (416) 979-5000 ext: 6484 Email: bwu@ee.ryerson.ca http://www.ee.ryerson.ca/~bwu/

Ryerson Campus

Topic 7

Multilevel Neutral Point Clamped (NPC) Inverters

Three-Level NPC Inverter Based MV Drive

Multilevel NPC Inverters

Lecture Topics

- Three-level NPC Inverter
- Space Vector Modulation
- Neutral Point Voltage Control
- High-level NPC Inverters

Three-Level NPC Inverters

Inverter Configuration

Clamping diodes: D_{z_1} and D_{z_2} (Phase A)

Three-Level NPC Inverters

Switching State

Switching State	Devic	e Switc (Phas	hing St e A)	Inverter Terminal Voltage	
	S_1	S_2	S_3	S_4	V_{AZ}
Р	On	On	Off	Off	E
0	Off	On	On	Off	0
Ν	Off	Off	On	On	-E

Complementary Switch pairs:

 $S_1 and S_3; S_2 and S_4;$

Three-Level NPC Inverters

Gate Signal Arrangements

Inverter phase voltage V_{AZ} has three levels: *E*, 0 and –*E*

Three-Level NPC Inverters

Inverter Output Waveforms

Space Vectors

Three-phase voltages

$$v_{AO}(t) + v_{BO}(t) + v_{CO}(t) = 0$$
 (1)

• Two-phase voltages

$$\begin{bmatrix} v_{\alpha}(t) \\ v_{\beta}(t) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos 0 & \cos \frac{2\pi}{3} & \cos \frac{4\pi}{3} \\ \sin 0 & \sin \frac{2\pi}{3} & \sin \frac{4\pi}{3} \end{bmatrix} \begin{bmatrix} v_{AO}(t) \\ v_{BO}(t) \\ v_{CO}(t) \end{bmatrix}$$
(2)

Space vector representation

$$\overset{\bowtie}{V}(t) = v_{\alpha}(t) + j v_{\beta}(t) \quad (3)$$

$$\begin{pmatrix} (2) \to (3) \\ W \\ V \\ (t) = \frac{2}{3} \Big[v_{AO}(t) e^{j0} + v_{BO}(t) e^{j2\pi/3} + v_{CO}(t) e^{j4\pi/3} \Big] \quad (4)$$

where $e^{jx} = \cos x + j \sin x$

• Space Vectors (Example)

Switching state [POO] \rightarrow on-state switches: Phase A: upper two switches [P] Phase B: middle two switches [O] Phase C: middle two switches [O] from which

$$v_{AO}(t) = \frac{1}{3}V_d, \ v_{BO}(t) = -\frac{1}{6}V_d$$
 and $v_{CO}(t) = -\frac{1}{6}V_d$ (5)

Substituting (5) to (4) gives a space vector

$$V_1 = \frac{1}{3} V_d e^{j0}$$
 (6)

Total switching states:27Total space vectors:19

Space Vector Modulation

Space Vectors Diagram

19 space vectors:Zero vector: V_0 Small vectors: $V_1 - V_6$ Medium vectors: $V_7 - V_{12}$ Large vectors: $V_{13} - V_{18}$

Switching States and Space Vectors

Space Vector		Switchi	ng State	Vector Classification	Vector Magnitude
V_0		[PPP][OC	00] [NNN]	Zero Vector (ZV)	0
	M	P-type	N-type		
	V_{1P}	[POO]			
1			[ONN]		
	V_{2P}	[PPO]			
$\bar{V_2}$	V_{2N}^{\bowtie}		[OON]		
X	V_{3P}	[OPO]		Small Vector (SV)	
$\bar{V_3}$			[NON]	P-type Small Vector (PSV) N-type Small Vector (NSV)	$\frac{1}{2}V_d$
	V_{4P}	[OPP]			5
$\vec{V_4}$	V_{4N}		[NOO]		
	V_{5P}	[OOP]			
\overline{V}_5	V_{5N}^{\bowtie}		[NNO]		
X		[POP]			
$\vec{V_6}$	V_{6N}^{\bowtie}		[ONO]		

Redundancy: Zero vector – three switching states Small vectors – two states per vector

Switching States and Space Vectors

Space Vector	Switching State	Vector Classification	Vector Magnitude
V_7	[PON]		
V_8	[OPN]		_
V_{M9}	[NPO]	Madium Vastar (MV)	$\frac{\sqrt{3}}{2}V_d$
	[NOP]		3
	[ONP]		
V_{12}	[PNO]		
V ₁₃	[PNN]		
V ₁₄	[PPN]		
V_{15}	[NPN]	Lanza Vastan (LV)	$\frac{2}{V}$
	[NPP]		$\overline{3}^{\nu d}$
	[NNP]		
V_{18}	[PNP]		

No redundant switching states for medium or large vectors

 V_{ref} : Reference vector, rotating in space at a certain speed; All other vectors are stationary.

SVM Principle

- For a given length and position in space, V_{ref} can be approximated by three nearby stationary vectors;
- Based on the chosen stationary vectors, switching states are selected and gate signals are generated;
- When V_{ref} passes through sectors one by one, different sets of switches are turned on or off;
- When V_{ref} rotates one revolution in space, the inverter output voltage varies one cycle over time;
- The inverter output frequency corresponds to the rotating speed of V_{ref};
- The inverter output voltage can be adjusted by the magnitude of V_{ref}.

Space Vector Modulation

Dwell Time Calculation

From equation (a)

$$\begin{cases} T_a = T_s [1 - 2m_a \sin\theta] \\ T_b = T_s [2m_a \sin(\frac{\pi}{3} + \theta) - 1] \\ T_c = T_s [1 - 2m_a \sin(\frac{\pi}{3} - \theta)] \end{cases}$$

 T_a , T_b and T_c – dwell times for V_1 , V_7 and V_2 $m_a = \sqrt{3} \frac{V_{ref}}{V_d}$ – modulation index

• Switching Sequence (Seven-segment)

General Design Requirements

- a) The transition from one switching state to the next involves only two switches in the same inverter leg, one being turned on and the other turned off; and
- b) The transition for V_{ref} moving from one sector (or one region) to the next requires no or minimum number of switchings.

Note:

The switching sequence design is not unique, but the above requirements should be satisfied for switching frequency minimization.

• Switching Sequence (Seven-segment)

Assuming V_{ref} is in Region 4 of Sector I, three vectors are selected: V_2 , V_7 and V_{14}

Voltage Vector		$\overset{\boxtimes}{V_{2N}}$	$\stackrel{\boxtimes}{V_7}$	V_{14}	$\overset{\boxtimes}{V_{2P}}$	V_{14}	V_7	$\overset{\boxtimes}{V_{2N}}$
Dwell Time		$\frac{T_c}{4}$	$\frac{T_b}{2}$	$\frac{T_a}{2}$	$\frac{T_c}{2}$	$\frac{T_a}{2}$	$\frac{T_b}{2}$	$\frac{T_c}{4}$
	Phase A	Ο	Р	Р	Р	Р	Р	0
Switching State	Phase B	Ο	0	Р	Р	Р	0	0
	Phase C	N	N	N	0	N	N	N
[P] = E, [O] = 0, [N] = -E.								

• Switching Sequence (Seven-segment)

Switching sequence requirement a) is satisfied.

• Switching Sequence (Seven-segment)

	Sector I											
Sgmt		1a		1b		2a		2b		3		4
1 st	\vec{V}_{1N}	[ONN]	\vec{V}_{2N}	[OON]	\vec{V}_{1N}	[ONN]	\vec{V}_{2N}	[OON]	\vec{V}_{1N}	[ONN]	\vec{V}_{2N}	[OON]
2 nd	\vec{V}_{2N}	[OON]	\vec{V}_0	[000]	\vec{V}_{2N}	[OON]	\vec{V}_7	[PON]	\vec{V}_{13}	[PNN]	\vec{V}_7	[PON]
3 rd	\vec{V}_0	[000]	\vec{V}_{1P}	[POO]	\vec{V}_7	[PON]	\vec{V}_{1P}	[POO]	\vec{V}_7	[PON]	\vec{V}_{14}	[PPN]
4 th	\vec{V}_{1P}	[POO]	\vec{V}_{2P}	[PPO]	\vec{V}_{1P}	[POO]	\vec{V}_{2P}	[PPO]	\vec{V}_{1P}	[POO]	\vec{V}_{2P}	[PPO]
5 th	\vec{V}_0	[000]	\vec{V}_{1P}	[POO]	\vec{V}_7	[PON]	\vec{V}_{1P}	[POO]	\vec{V}_7	[PON]	\vec{V}_{14}	[PPN]
6 th	\vec{V}_{2N}	[OON]	\vec{V}_0	[000]	\vec{V}_{2N}	[OON]	\vec{V}_7	[PON]	\vec{V}_{13}	[PNN]	\vec{V}_7	[PON]
7 th	\vec{V}_{1N}	[ONN]	\vec{V}_{2N}	[OON]	\vec{V}_{1N}	[ONN]	\vec{V}_{2N}	[OON]	\vec{V}_{1N}	[ONN]	\vec{V}_{2N}	[OON]

• Switching Sequence (Seven-segment)

Switching sequence requirement b) is satisfied.

Space Vector Modulation

• Simulated Waveforms (Seven-segment)

• Simulated Waveforms (Seven-segment)

• Harmonic Content (Seven-segment)

Laboratory Prototype at Ryerson

Space Vector Modulation

Measured Waveforms

• Measured waveforms (with even-order harmonic elimination)

Topic 7

Neutral Point Voltage Control

Neutral Point Voltage Deviation

The neutral point voltage V_z can be controlled by P- and N-types of small vectors

Neutral Point Voltage Control

Neutral Point Voltage Control

$$\begin{split} T_a &= T_{aP} + T_{aN} \\ \begin{cases} T_{aP} &= \frac{T_a}{2} \left(1 + \Delta t \right) \\ T_{aN} &= \frac{T_a}{2} \left(1 - \Delta t \right) \end{cases} \quad -1 \leq \Delta T \leq 1 \end{split}$$

Neutral Point Deviation Level	Motoring Mode $i_d > 0$	Regenerating Mode $i_d < 0$				
$(v_{d1} - v_{d2}) > \Delta V_d$	$\Delta t > 0$	$\Delta t < 0$				
$(v_{d2} - v_{d1}) > \Delta V_d$	$\Delta t < 0$	$\Delta t > 0$				
$\left \boldsymbol{v}_{d1} - \boldsymbol{v}_{d2} \right < \Delta V_d$	$\Delta t = 0$	$\Delta t = 0$				
ΔV – maximum allowed voltage deviation ($\Delta V_d > 0$).						

Neutral Point Voltage Control

Neutral Point Voltage Control

R is used on purpose to make the dc voltage unbalance.

High-Level NPC Inverters

Inverter Topologies

High-Level NPC Inverters

Switching State

Switch Status								
Four-level Inverter								
s 1	S	S_2 S_3 S_1' S_2' S_3'					*	
1			1	0		0	0	3 E
0			1 1 0		1 0		0	2 <i>E</i>
0	()	1	1		1	0	E
0	()	0	1		1	1	0
Five-level Inverter								
S_1	S_2	S_3	S_4	S'_1	S'_2	S'_3	S'_4	V_{AN}
1	1	1	1	0	0	0	0	4 <i>E</i>
0	1	1	1	1	0	0	0	3 E
0	0	1	1	1	1	0	0	2 <i>E</i>
0	0	0	1	1	1	1	0	
0	0	0	0	1	1	1	1	0

High-Level NPC Inverters

Component Count

Voltage Level	Switches	Clamping Diodes*	dc capacitors					
m	6(<i>m</i> -1)	3(<i>m</i> -1)(<i>m</i> -2)	(<i>m</i> -1)					
3	12	6	2					
4	18	18	3					
5	24	36	4					
6	30	60	5					
* The clamping diodes have the same voltage rating as								
other swite	hes.							

Note:

The number of clamping diodes increases substantially with the voltage level.

High-Level NPC Inverters

• IPD Modulation (four-level)

Topic 7

High-Level NPC Inverters

• Harmonic Content (four-level, IPD Modulation)

High-Level NPC Inverters

APOD Modulation (four-level)

High-Level NPC Inverters

• Harmonic Content (four-level, APOD Modulation)

Summary

- The 3-level NPC inverter widely used in MV drives Main features
 - Low device count
 - No switches in series
 - Suitable for medium voltage operation
- The practical use of 4- or 5-level NPC inverters not reported

Main reasons

- Difficulties in dc capacitor voltage control
- Large number of clamping diodes

RYERSON UNIVERSITY

Thanks