Power Converter Systems

Graduate Course EE8407

Bin Wu PhD, PEng

Professor ELCE Department Ryerson University

Contact Info Office: ENG328 Tel: (416) 979-5000 ext: 6484 Email: bwu@ee.ryerson.ca http://www.ee.ryerson.ca/~bwu/

Ryerson Campus

Topic 9

PWM Current Source Inverters (CSI)

PWM Current Source Inverters

Lecture Topics

- Single Bridge Inverter
- Trapezoidal Modulation (TPWM)
- Selective Harmonic Elimination (SHE)
- Space Vector Modulation (SVM)
- Dual Bridge Inverter

Single Bridge Inverter

Inverter Topology

- Reduce harmonic distortion

Features:

- Simple topology no antiparallel diodes
- Reliable short circuit protection constant dc current
- Very low dv/dt on motor terminals

Topic 9

Single Bridge Inverter

• DC Current Source I_d

Implementation of dc current source:

- use a large size dc choke making I_d smooth;
- use dc current feed back control keeping I_d constant

Single Bridge Inverter

Modulation Techniques

- Trapezoidal PWM (TPWM)
- Selective Harmonic Elimination (SHE)
- Space Vector Modulation (SVM)
- Constraints on Switching Pattern Design
 - dc current I_d cannot be interrupted
 - inverter output current waveform must be defined.
- At any time instant, only two switches are turned on, one connected to the positive dc bus, and the other to the negative dc bus.

Trapezoidal Modulation

• Trapezoidal PWM (TPWM)

Trapezoidal Modulation

• Harmonic Content (TPWM)

Trapezoidal Modulation

(a) $f_1 = 13.8$ Hz

 $f_5 = 5$ Hz, $N_p = 31$, $f_{sw} = 155$ Hz

Textbook: Bin Wu, 'High-Power Converters and AC Drives', Wiley - IEEE Pross, 2006

Selective Harmonic Elimination (SHE)

Topic 9

• Principle

- Not all the switching angles are independent.
- Only two harmonics can be eliminated with $N_p = 5$.
- Number of harmonics to be eliminated:

$$k = (N_p - 1)/2$$

 No modulation index control – the magnitude of inverter output current is controlled by I_d

• Fourier Analysis

$$i_w(\omega t) = \sum_{n=1}^{\infty} a_n \sin(n\omega t)$$

$$a_n = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} i_w(\omega t) \sin(n\omega t) d(\omega t)$$

$$a_{n} = \frac{4I_{dc}}{\pi} \times \begin{cases} \int_{\theta_{1}}^{\theta_{2}} \sin(n\omega t)d(\omega t) + \dots + \int_{\theta_{k}}^{\frac{\pi}{6}} \sin(n\omega t)d(\omega t) + \dots \\ \int_{\frac{\pi}{3}}^{\frac{\pi}{3}-\theta_{k-1}} \sin(n\omega t)d(\omega t) + \dots + \int_{\frac{\pi}{3}-\theta_{1}}^{\frac{\pi}{2}} \sin(n\omega t)d(\omega t) & \text{k} = \text{odd}; \end{cases} \\ \int_{\theta_{1}}^{\theta_{2}} \sin(n\omega t)d(\omega t) + \dots + \int_{\theta_{k-1}}^{\theta_{k}} \sin(n\omega t)d(\omega t) + \dots \\ \int_{\frac{\pi}{3}}^{\frac{\pi}{3}-\theta_{k}} \sin(n\omega t)d(\omega t) + \dots + \int_{\frac{\pi}{3}-\theta_{1}}^{\frac{\pi}{2}} \sin(n\omega t)d(\omega t) & \text{k} = \text{even}. \end{cases}$$

Fourier Analysis

Expression for a_n

$$a_{n} = \frac{4I_{dc}}{\pi n} \times \begin{cases} \cos(n\theta_{1}) + \cos[n(\frac{\pi}{3} - \theta_{1})] - \cos(n\theta_{2}) - \cos[n(\frac{\pi}{3} - \theta_{2})] + \dots \\ + \cos(n\theta_{k}) + \cos[n(\frac{\pi}{3} - \theta_{k})] - \cos(n\frac{\pi}{6}) & k = \text{odd}; \\ \cos(n\theta_{1}) + \cos[n(\frac{\pi}{3} - \theta_{1})] - \cos(n\theta_{2}) - \cos[n(\frac{\pi}{3} - \theta_{2})] + \dots \\ - \cos(n\theta_{k}) - \cos[n(\frac{\pi}{3} - \theta_{k})] + \cos(n\frac{\pi}{6}) & k = \text{even.} \end{cases}$$

Switching Angle Calculation

To Eliminate n^{th} harmonic, set $a_n = 0$ $F_i(\theta_1, \theta_2, \theta_3, ..., \theta_k) = 0$ i = 1, 2, ..., k

For 5th, 7th and 11th harmonic elimination:

$$F_{1} = \cos(5\theta_{1}) + \cos[5(\frac{\pi}{3} - \theta_{1})] - \cos(5\theta_{2}) - \cos[5(\frac{\pi}{3} - \theta_{2})] + \cos(5\theta_{3}) + \cos[5(\frac{\pi}{3} - \theta_{3})] - \cos(\frac{5\pi}{6}) = 0$$

$$F_{2} = \cos(7\theta_{1}) + \cos[7(\frac{\pi}{3} - \theta_{1})] - \cos(7\theta_{2}) - \cos[7(\frac{\pi}{3} - \theta_{2})] + \cos(7\theta_{3}) + \cos[7(\frac{\pi}{3} - \theta_{3})] - \cos(\frac{7\pi}{6}) = 0$$

$$F_{3} = \cos(11\theta_{1}) + \cos[11(\frac{\pi}{3} - \theta_{1})] - \cos(11\theta_{2}) - \cos[11(\frac{\pi}{3} - \theta_{2})] + \cos(11\theta_{3}) + \cos[11(\frac{\pi}{3} - \theta_{3})] - \cos(\frac{11\pi}{6}) = 0$$

Topic 9

Selective Harmonic Elimination

• Switching Angles (SHE)

Harmonics	s Switching Angles		Harmonics	Switching Angles				
Eliminated	θ_1	θ_2	θ_3	Eliminated	θ_1	θ_2	θ_3	θ_4
5	18.00	-	-	7,11,17	11.70	14.12	24.17	-
7	21.43	-	-	7,13,17	12.69	14.97	24.16	-
11	24.55	-	-	7,13,19	13.49	15.94	24.53	-
13	25.38	-	-	11,13,17	14.55	15.97	25.06	-
5,7	7.93	13.75	-	11,13,19	15.24	16.71	25.32	-
5,11	12.96	19.14	-	13,17,19	17.08	18.23	25.84	-
5,13	14.48	21.12	-	13,17,23	18.03	19.22	26.16	-
7,11	15.23	19.37	-	5,7,11,13	0.00	1.60	15.14	20.26
7,13	16.58	20.79	-	5,7,11,17	0.07	2.63	16.57	21.80
7,17	18.49	23.08	-	5,7,11,19	1.11	4.01	18.26	23.60
11,13	19.00	21.74	-	5,7,13,17	1.50	4.14	16.40	21.12
11,17	20.51	23.14	-	5,7,13,19	2.56	5.57	17.82	22.33
11,19	21.10	23.75	-	5,7,17,19	4.59	7.96	17.17	20.55
13,17	21.19	23.45	-	5,11,13,17	4.16	6.07	16.79	22.04
13,19	21.71	23.94	-	5,11,13,19	5.13	7.26	17.57	22.72
5,7,11	2.24	5.60	21.26	5,11,17,19	6.93	9.15	17.85	22.77
5,7,13	4.21	8.04	22.45	5,13,17,19	7.80	9.82	18.01	23.25
5,7,17	6.91	11.96	25.57	7,11,13,17	5.42	6.65	18.03	22.17
5,11,13	7.81	11.03	22.13	7,11,13,19	6.35	7.69	18.67	22.74
5,11,17	10.16	14.02	23.34	7,11,17,19	8.07	9.44	19.09	22.93
5,13,17	11.24	14.92	22.98	7,13,17,19	8.88	10.12	19.35	23.22
7,11,13	9.51	11.64	23.27	11,13,17,19	10.39	11.14	20.56	23.60

• Inverter Waveforms (SHE)

Topic 9

Selective Harmonic Elimination

• Waveforms (SHE)

Space Vector Modulation

Topic 9

Space Vector Modulation

Switching State

Space Vector Modulation

Switching States & Space Vectors

Space V	ector	Switching State	On-state Switch	Vector Definition			
	R	[2 0 0]	S_1 , S_4	M			
Zero Vector	\vec{I}_0	[0 2 0]	S ₃ , S ₆	$I_0 = 0$	[4].	Upper switch on	
		[0 0 2]	S ₅ , S ₂		1.11-	Opper Switch on	
	$\stackrel{\boxtimes}{I_1}$	[1 -1 0]	${old S}_6$, ${old S}_1$		[-1]:	Lower switch on	
Active Vector	$\overset{\boxtimes}{I}_2$	[1 0 -1]	<i>S</i> ₁ , <i>S</i> ₂	$\overset{\mathbb{M}}{I_2} = \frac{2}{\sqrt{3}} I_d \ e^{j\pi/6}$	[0]:	None of the switches	
			<i>S</i> ₂ , <i>S</i> ₃	$S_3 \qquad \qquad \boxed{\begin{matrix} \boxtimes \\ I_2 = \frac{2}{\sqrt{3}} I_d \ e^{j3\pi/6} \end{matrix}}$		in a leg turned on	
	[∅] I ₄ [-1 1 0]		S ₃ , S ₄		[2]:	Both switches in a leg turned on	
	$\stackrel{\boxtimes}{I_5}$	[-1 0 1]	${m S}_{4}, {m S}_{5}$			(bypass mode)	
		[0 -1 1]	S ₅ , S ₆				

Space Vector Modulation

Dwell Time Calculation

Space Vector Modulation

Dwell Time Calculation

$$\begin{cases} T_1 = \frac{I_{ref}}{I_d} \sin\left(\frac{\pi}{6} - \theta\right) T_s \\ T_2 = \frac{I_{ref}}{I_d} \sin\left(\frac{\pi}{6} + \theta\right) T_s \\ T_0 = T_s - T_1 - T_2 \end{cases} \longrightarrow \begin{cases} T_1 = m_a \sin\left(\frac{\pi}{6} - \theta\right) T_s \\ T_2 = m_a \sin\left(\frac{\pi}{6} + \theta\right) T_s \\ T_0 = T_s - T_1 - T_2 \end{cases}$$

$$m_a = \frac{I_{ref}}{I_d} = \frac{\hat{I}_{w1}}{I_d}$$

Switching Sequence

Requirements:

- 1) Transition from one switching state to the next involves only two switches
- 2) At any time only two switches are on.

• Switching Sequence (Over one cycle)

• Inverter Output Waveforms (SVM)

• Harmonic Spectrum (SVM)

• Harmonic Content (SVM)

Topic 9

Dual-Bridge Inverter

Converter Configuration

Dual-Bridge Inverter

Space Vector Diagram

19 vectors and 51 switching states

Dual-Bridge Inverter

DC Current Balance Control

Dual-Bridge Inverter

DC Current Balance Control

Switching State	Load Voltage	i_1	i_2	i ₃	i_4
[16;56] and [16;56]	$v_{AO} = v_{CO}$	×	×	×	×
[16:56]	$v_{AO} > v_{CO}$	\downarrow	×	Ŷ	×
	$v_{AO} < v_{CO}$	Ť	×	Ļ	×
[56:16]	$v_{AO} > v_{CO}$	\uparrow	×	↓	×
[: :,::]	$v_{AO} < v_{CO}$	Ļ	×	Ŷ	×
Symbol '×': dc currents not affected.					

Current paths with switching state [16;56]

Dual-Bridge Inverter

Space Vector Diagram

• **PWM Scheme Comparison**

Item	SVM	TPWM	SHE	
DC Current Utilization $I_{wl,max} / I_d$	0.707	0.74	0.73 to 0.78	
Dynamic performance	High	Medium	Low	
Digital Implementation	Real timeReal time or look-up tableLo		Look-up table	
Harmonic Performance	Adequate	Good	Best	
dc Current Bypass Operation	Yes	No	Optional	

RYERSON UNIVERSITY

Thanks