
Протокол сигнализации спр

Определение

«SIР*- является протоколом управления прикладного уровня для создания, изменения и завершения сеансов связи с одним или большим количеством участников. В понятие сеанса входят мультимедиа конференции, обучение на расстоянии, Internet-телефония и подобные приложения» (RFC 2543)
*SIP – Session Initiation Protocol – Протокол инициализации сессии

Организации стандартизации

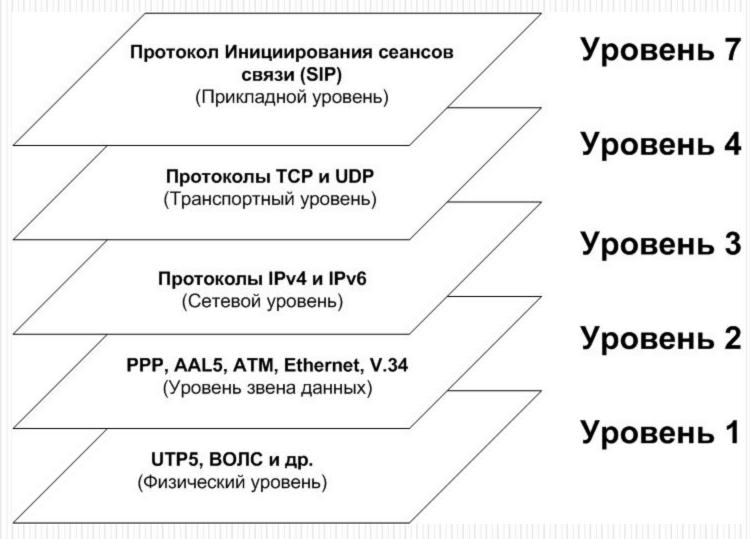
Принципы, заложенные в основу SIP

- 1. Расширяемость протокола возможность дополнения протокола новыми функциями
- 2. Масштабируемость сети возможность увеличения элементов в сети при её расширении
- 3. Интеграция в стек существующих протоколов Интернет
- 4. Взаимодействие с другими протоколами сигнализации
- Персональная мобильность возможность быть доступными в любом месте с любым терминалам в любое время (сообщение REGISTER) → единый номер для всех услуг электросвязи

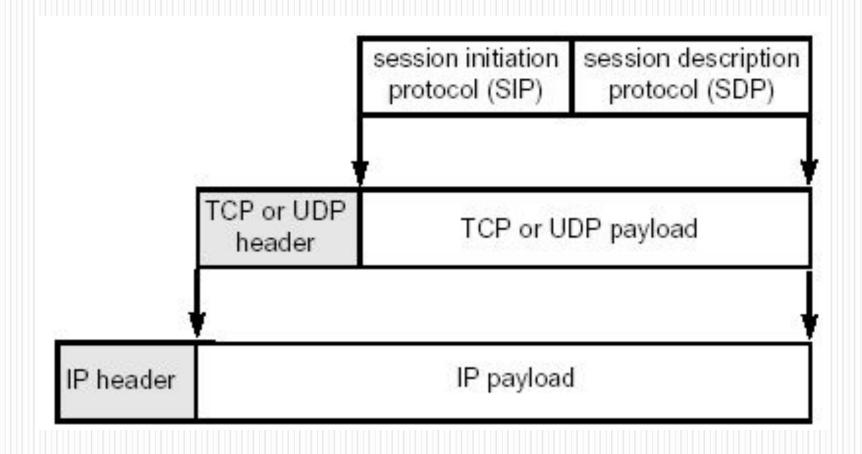
Особенности протокола SIP

- Основан на НТТР → проверенная технология для работы в Интернет
- Использует и <u>UDP</u>, и <u>TCP</u>
- Работает поверх <u>различных транспортных протоколов</u> (IP, IPX, X.25, ATM)
- Использует адресацию типа e-mail (vova@loniis.ru)
- Текстовый формат сообщений → простота и удобство техобслуживания и программирования
- <u>Высокая информативность</u> сообщений → минимальное время установления соединения

Возможности протокола SIP


SIP поддерживает пять аспектов организации и завершения мультимедийной связи:

- •Определение местоположения пользователя
- •Определение готовности пользователя участвовать в сеансе
- •Установление сеанса связи как для вызывающей, так и для вызываемой сторон, управление сеансом связи
- •Передача пользовательской информации


Организация конференций трех видов:

- •В режиме многоадресной рассылки
- •При помощи устройства управления конференцией, которому участники передают информацию в режиме точка-точка, а оно, в свою очередь, обрабатывает эту информацию и рассылает участникам конференции
- •Соединение каждого пользователя с каждым в режиме точка-точка
- •Определение функциональной возможности терминалов пользователей

Место протокола SIP в стеке протоколов TCP/IP

Формирование сообщения сигнализации SIP

Адресация в SIP

В Интернет – URL (Uniform Resource Location)

B SIP – **SIP URL** (sip:name@host)

тип адреса

- «имя@домен»
- «имя(ахост»
- «имя@IP-адрес»
- «№ телефона@шлюз»

пример

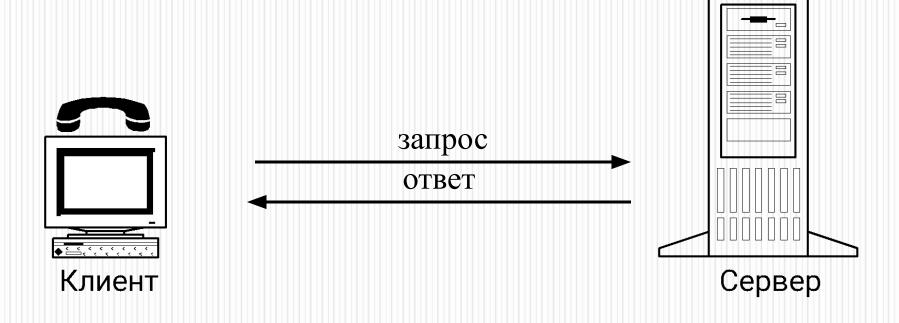
- sip:vova@loniis.ru
- sip:vova@rts.loniis.ru
- sip:vova@192.168.100.1
 - sip:2947678@gateway.ru

Уровни протокола SIP

- •Первый уровень отвечает за синтаксис и кодирование
- •Второй уровень транспортный определяет, как клиент передает запросы и принимает ответы, и как сервер получает запросы и передает ответы по сети
- •Третий уровень уровень транзакций производит повторную передачу сообщений прикладного уровня, определяет соответствие ответов запросу и уведомляет верхний уровень о срабатывании таймера.
- •**Четвертый уровень** пользователь транзакций создает/отменяет клиентские запросы

Понятие транзакции

Транзакция - это запрос, переданный


клиентской стороной серверной стороне с

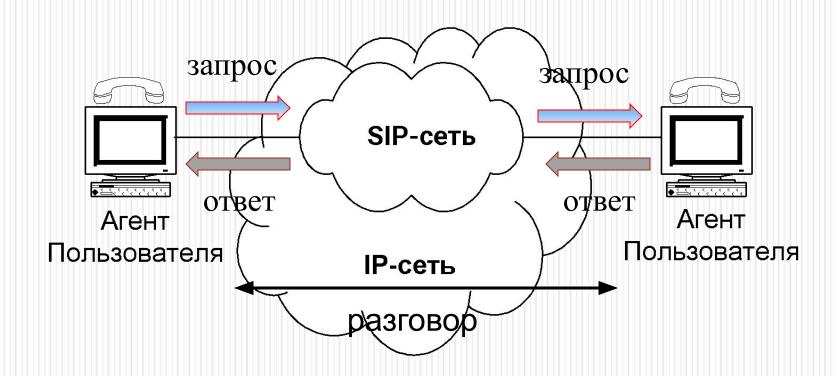
использованием транспортного уровня SIP,

вместе со всеми ответами на этот запрос,

переданными серверной стороной клиенту.

сервер»

Элементы сети SIP

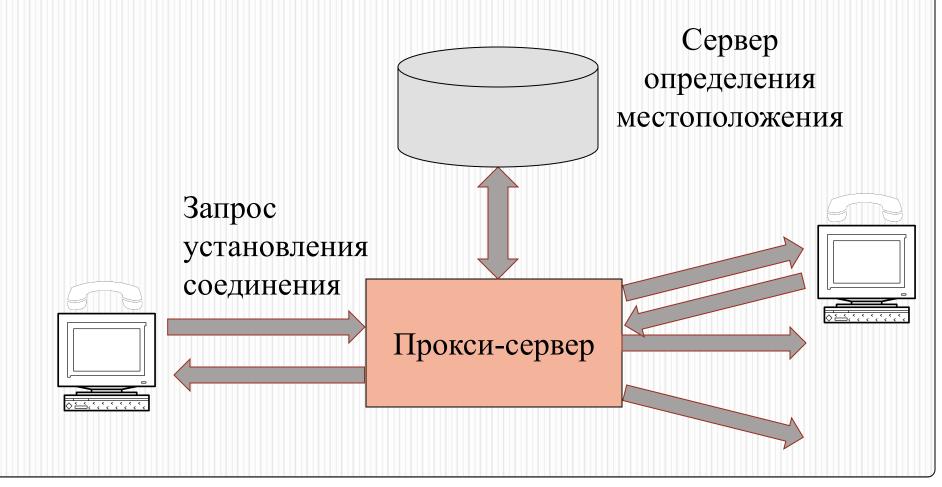

- Агент пользователя (UA User Agent)
- Прокси-сервер (proxy server)
- Сервер переадресации (redirect server)
- Сервер определения местоположения (location server) (не стандартизирован в RFC 2543)

Агент пользователя

Агент пользователя (User Agent):

- •Клиент агента пользователя (User Agent Client) часть программного обеспечения агента пользователя, которая создает новые запросы, отправляет их и обрабатывает принятые ответы.
- •Сервер агента пользователя (User Agent Server) часть программного обеспечения агента пользователя, которая принимает запросы и генерирует ответы, основываясь на действиях пользователя, полученных сообщениях, результатах выполнения программ или на каких-либо других событиях.

Агент пользователя

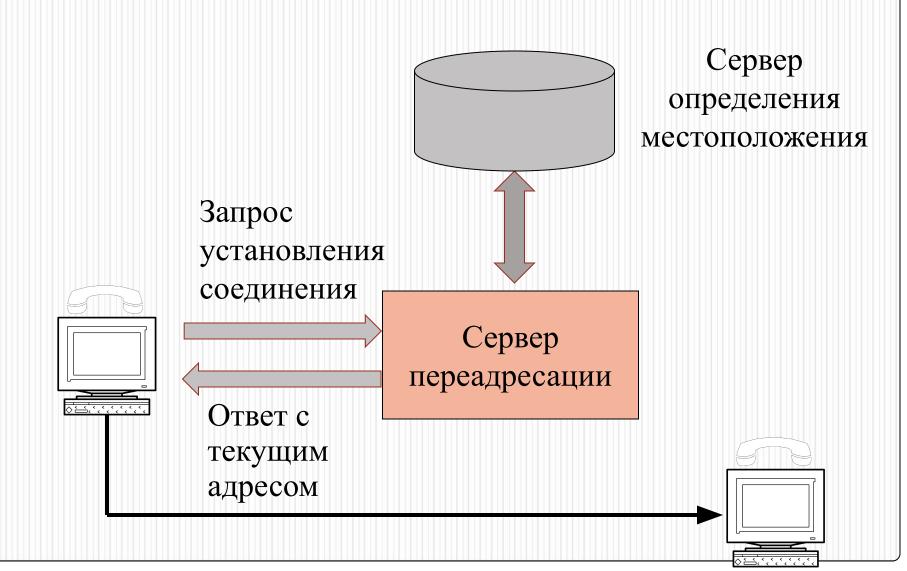

Прокси-сервер

Прокси-сервер принимает запросы, обрабатывает их и, в зависимости от типа запроса, выполняет определенные действия.

Бывает двух типов:

- •Без сохранения состояний (Stateless) принимает запросы, перенаправляет их дальше и забывает
- C сохранением состояний (Stateful) принимает запросы, перенаправляет их и ждет ответы

Прокси-сервер

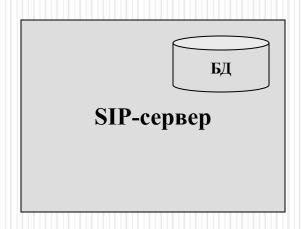


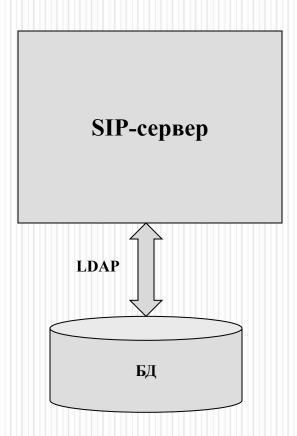
Сервер переадресации

Сервер переадресации предназначен для определения текущего адреса пользователя

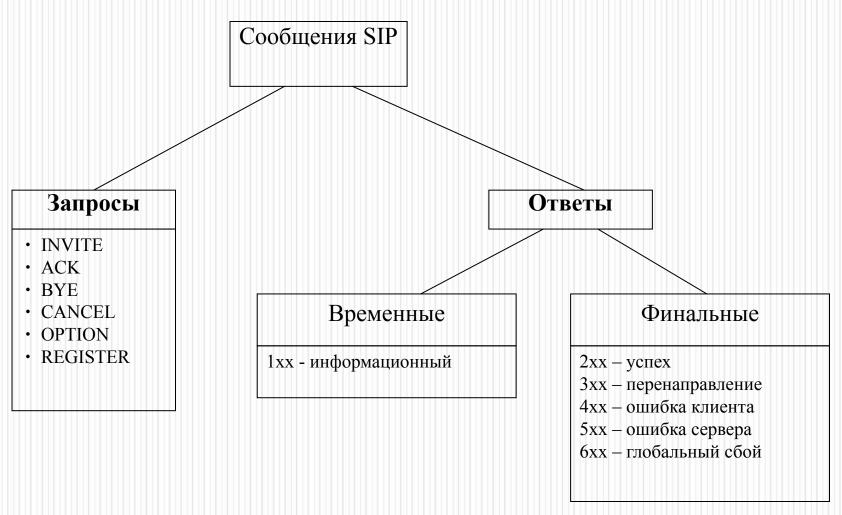
- •Не генерирует своих запросов
- •Не терминирует вызовы
- •Не содержит клиентскую часть программного обеспечения

Сервер переадресации




Сервер определения местоположения

- Служит для хранения текущего адреса пользователя.
- Позволяет агентам регистрировать свое местоположение, обеспечивая тем самым мобильность пользователя
- Может быть совмещен с прокси-сервером
- О своем местоположении пользователь информирует сервер при помощи сообщения REGISTER. 2 режима регистрации:
 - Новый адрес сообщается один раз
 - Новый адрес сообщается через определенные промежутки времени


Сервер определения местоположения

Локальная Удаленная

Сообщения SIP

Структура сообщения SIP

Стартовая строка

Заголовки

Пустая строка

Тело сообщения

Стартовая строка

• Начальная строка любого SIP сообщения. Если сообщение является запросом, то в этой строке указывается тип запроса, адресат и номер версии протокола. Если сообщение является ответом на запрос, в стартовой строке указывается номер версии протокола, тип ответа и его короткая расшифровка, предназначенная только ДЛЯ пользователя.

Заголовки

служат для передачи информации об отправителе, адресате, пути следования и других сведений, т.е. переносят необходимую для обслуживания данного сообщения информацию. О типе заголовка можно узнать из его имени. В протоколе SIP определено 4 типа заголовков:

- •Общие заголовки
- •Заголовки содержания
- •Заголовки, передающие дополнительную информацию о запросе
- •Заголовки, передающие дополнительную информацию об ответе

Тело сообщения

• Запросы:

- Содержит описание сеансов связи
- Тело сообщения есть не во всех сообщениях (например сообщение BYE не содержит тела сообщения)

• Ответы:

• Любые ответы могут содержать тело сообщения, но содержимое тела в них может быть разным

Пример сообщения SIP

Сообщение SIP Стартовая строка INVITE sip:7170@iptel.org SIP/2.0 Via: SIP/2.0/UDP 195.37.77.100:5040;rport Max-Forwards: 10 From: "jiri" <sip:jiri@iptel.org>;tagi=76ff7a07-c091-4192-84a0-d56e91fe104f To: <sip:jiri@bat.iptel.org> Заголовок Call-ID: d10815e0-bf17-4afa-8412-d9130a793d96@213.20.128.35 CSegi: 2 INVITE Contact: <sip:213.20.128.35:9315> User-Agent: Windows RTC/1.0 Proxy-Authorization: Digest username="jiri", realm="iptel.org", algorithm="MD5", uri="sip:jiri@bat.iptel.org", nonce="3cef75390000001771328f5ae1b8b7f0d742da1feb5753c", response="53fe98db10e1074 b03b3e06438bda70f" Content-Type: application/sdp Content-Length: 451 Тело сообщения o=jku2 0 0 IN IP4 213.20.128.35 s=session c=IN IP4 213.20.128.35 b=CT:1000 t=0.0m=audio 54742 RTPi/AVP 97 111 112 6 0 8 4 5 3 101 a=rtpmap:97 red/8000 a=rtpmap:111 SIREN/16000 a=fmtp:111 bitrate=16000 a=rtpmap:112 G7221/16000 a=fmtp:112 bitrate=24000 a=rtpmap:6 DVI4/16000 a=rtpmap:0 PCMU/8000 a=rtpmap:4 G723/8000 a=rtpmap: 3 GSMi/8000 a=rtpmap:101 telephone-event/8000 a=fmtp:101 0-16

Пример сообщения SIP

Request URI Версия протокола Тип сообщения Заголовок VIA. Указывает один из узлов, используемых для проведения (INVITE)sip:7170@iptel.org/SIP/2.0 транзакции и идентифицирует место, куда должен быть отправлен ответ Максимальное число пересылок на пути к месту назначения Via: SIP/2.0/UDP 195.37.77.100:5040;rport Идентификатор инициатора сообщения Max-Forwards: 10 From: "jiri" <sip:jiri@iptel.org>;tagi=76ff7a07-c091-4192-84a0-d56e91fe104f Адрес получачтеля To: <sip:jiri@bat.iptel.org>) Call-ID: d10815e0-bf17-4afa-8412-d9130a793d96@213.20.128.35) CSegi: 2 INVITE Идентификация транзакции Contact: <sip:213.20.128.35:9315>)_ Информация о клиенте Агента пользователя User-Agent: Windows RTC/1.0 Идентифицирует пользователя прокси-серверу Proxy-Authorization: Digest username="jiri", realm="iptel.org", algorithm="MD5", uri="sip:jiri@bat.iptel.org", nonce="3cef75390000001771328f5ae1b8b7f0d742da1feb5753c". response="53fe98db10e1074 b03b3e06438bda70f" Content-Type: application/sdp Информация о типе тела сообщения Content-Length: 451 Размер тела сообщения v=0o=iku2 0 0 IN IP4 213.20.128.35 s=session c=IN IP4 213.20.128.35 Тело сообщения b=CT:1000 содержит описание типа t = 0.0медиа данных, которые m=audio 54742 RTPi/AVP 97 111 112 6 0 8 4 5 3 101 будут передаваться a=rtpmap:97 red/8000 пользователем a=rtpmap:111 SIREN/16000 a=fmtp:111 bitrate=16000 a=rtpmap:112 G7221/16000 a=fmtp:112 bitrate=24000 a=rtpmap:6 DVI4/16000 a=rtpmap:0 PCMU/8000 a=rtpmap:4 G723/8000 a=rtpmap: 3 GSMi/8000 a=rtpmap:101 telephone-event/8000 a=fmtp:101 0-16

Запросы

Тип запроса	Описание запроса
INVITE	Приглашает пользователя к сеансу связи. Содержит SDP- описание сеанса
ACK	Подтверждает прием окончательного ответа на запрос INVITE
BYE	Завершает сеанс связи. Может быть передан любой из сторон, участвующих в сеансе
CANCEL	Отменяет обработку запросов с теми же заголовками Call-ID, To, From и CSeq, что и в самом запросе CANCEL
REGISTER	Переносит адресную информацию для регистрации пользователя на сервере определения местоположения
OPTION	Запрашивает информацию о функциональных возможностях сервера

Запросы

Тип запроса	Описание запроса
UPDATE	Предлагает новыт параметры сеанса связи до прихода окончательного ответа на запрос INVITE
INFO	Переносит дополнительную информацию во время сеанса связи.
PRACK	Аналог сообщения АСК для предварительных ответов
SUBSCRIBE NOTIFY	Используются для предоставления дополнительных услуг
REFER	Команда перевода вызова
MESSAGE	Обеспечивает передачу пользовательской информации без установления сеанса связи
PUBLISH	Обеспечивает передачу информации о состоянии агента пользователя.

Структура запроса

Тип запроса Пробел Request- Пробел Протокола СRLF

Тип запроса

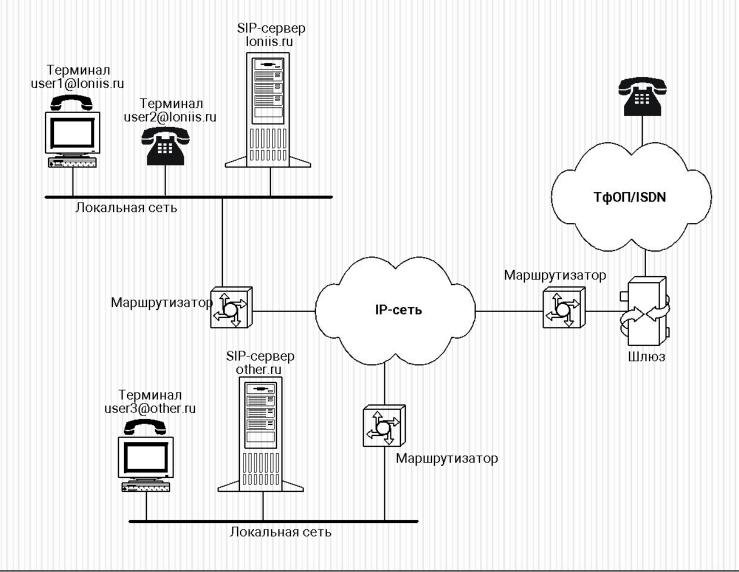
6 типов запросов (RFC 3261):

- REGISTER
- INVITE
- ACK
- CANCEL
- BYE
- OPTION

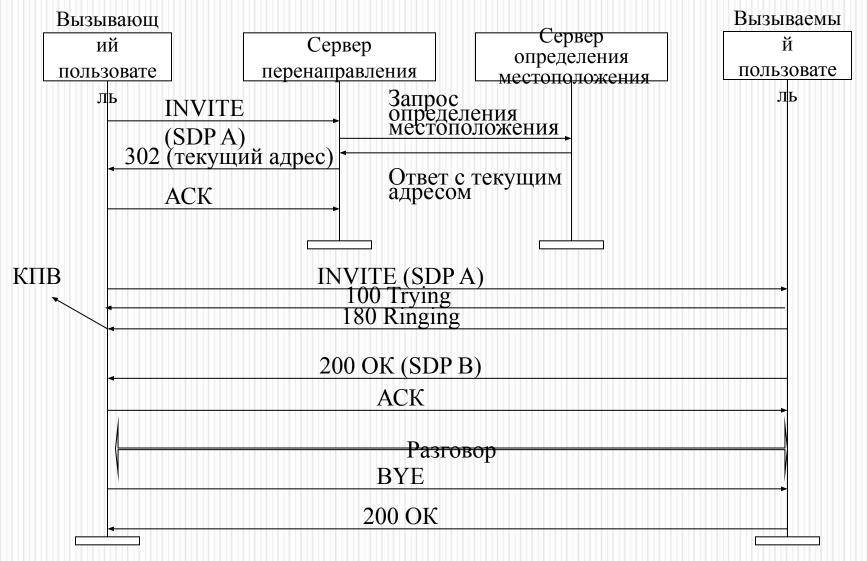
Request-URI

Указывает пользователя или услугу, к которой адресован запрос. Поле Request-URI не должно содержать пробелов и управляющих символов, а также не должно быть заключено в угловые скобки

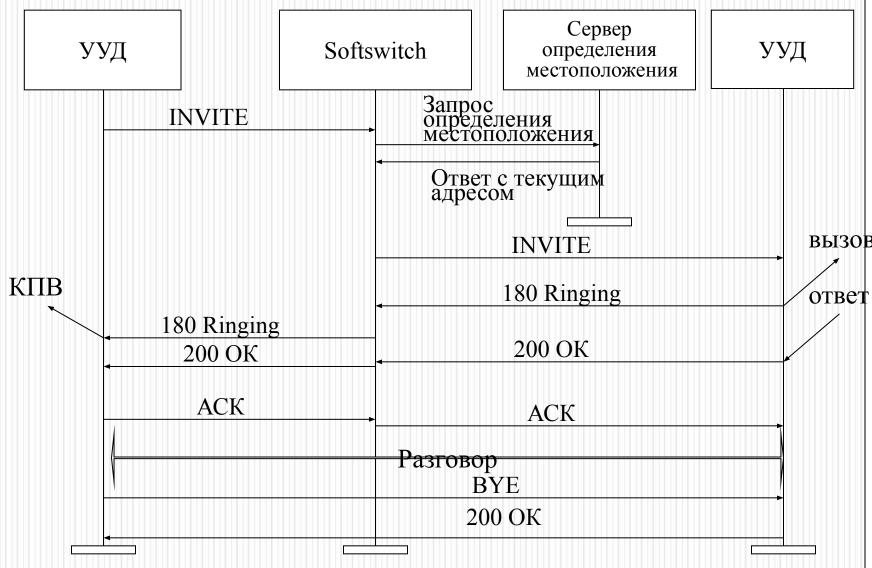
Версия протокола


И запросы и ответы содержат данные действующей версии SIP-протокола, принимая во внимание порядок, соответствие требованиям и изменение численного индекса версии

Ответы

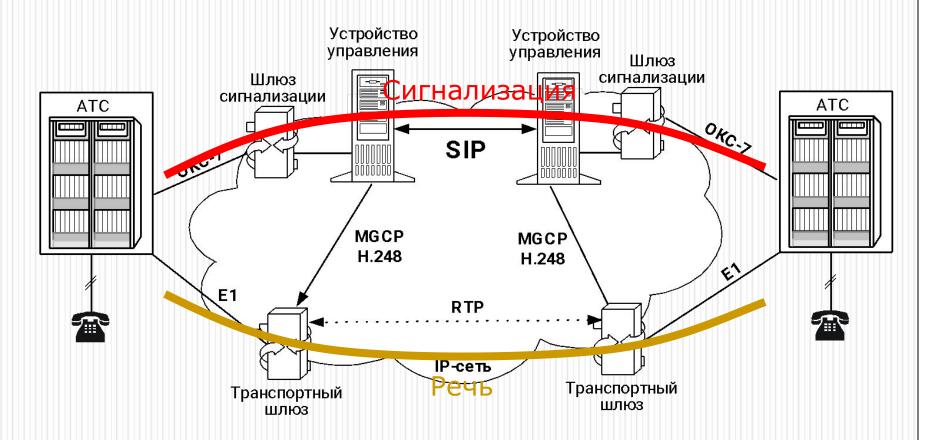

Шесть типов ответов:

- 1xx информационные
- 2xx ycnex
- 3xx перенаправление
- **4хх** ошибка клиента
- **5хх** ошибка сервера
- **6хх** глобальная ошибка


Пример построения SIP-сети

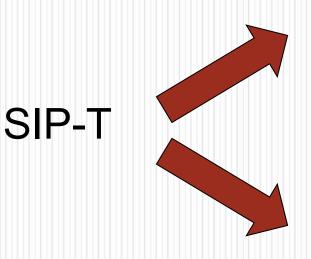
Алгоритм работы сервера перенаправления

Алгоритм работы прокси-сервера или Softswitch NGN


Транспортный уровень протокола SIP

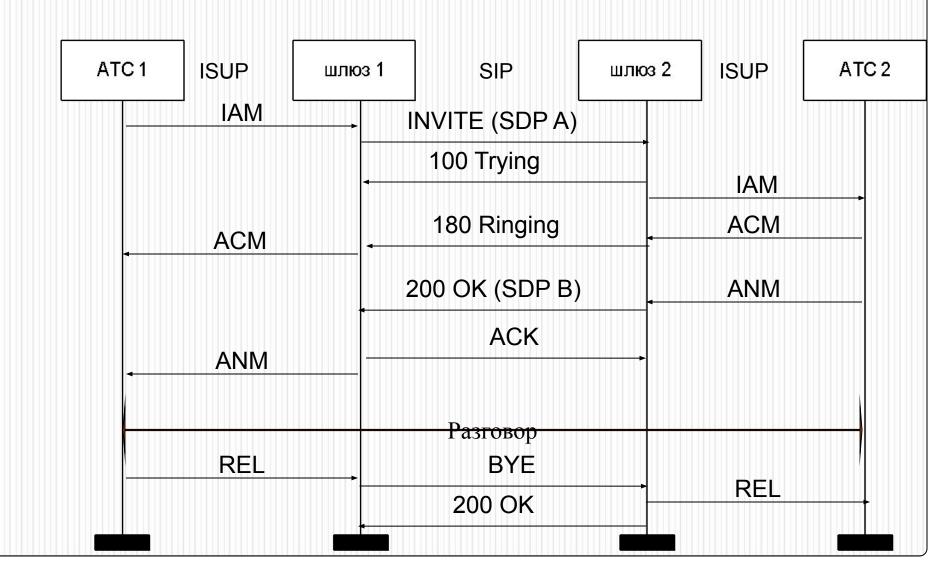
- Отвечает за перенос запросов и ответов через сеть с использованием ее транспортных протоколов
- Отвечает за управление соединениями таких протоколов как ТСР и SCTР
- Имеет клиентскую и серверную стороны
- Соединение контролируется как на клиентской так и на серверной стороне

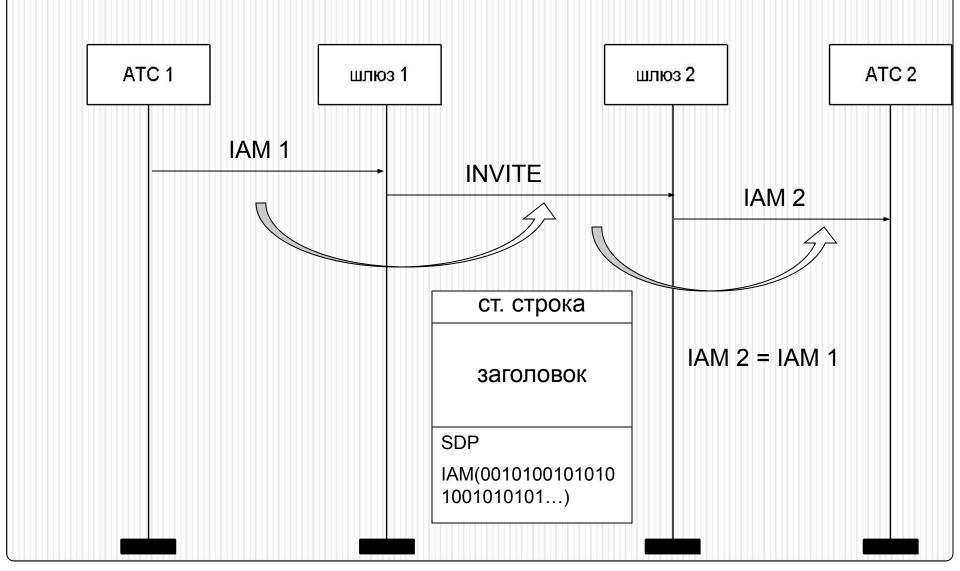
Транспортный уровень протокола SIP


- Соединения идентифицируются указателем, состоящим из:
 - Адреса
 - Порта
 - Транспортного протокола на удаленном конце
- Соединение должно сохранятся в течение некоторого интервала времени после того, как последнее сообщение было передано или получено через это соединение

Передача речи и команд управления

SIP-T (SIP for Telephony)


Требование к сети IP-телефонии это возможность так называемой **прозрачности** услуг относительно ТфОП. Традиционные телефонные услуги, такие как call waiting, услуга 800 и т.д. реализуются с помощью системы сигнализации №7.


<u>Инкапсуляция</u> сообщений OKC7/DSS-1 в сообщения SIP

Использование информации из сообщений OKC7/DSS-1

Взаимодействие с ТфОП

Инкапсуляция

Применения SIP

- 1. Сотовые сети нового поколения 3G
- 2. SIР для установления мультимедийных сессий
- 3. SIP for Telephony (SIP-T)