

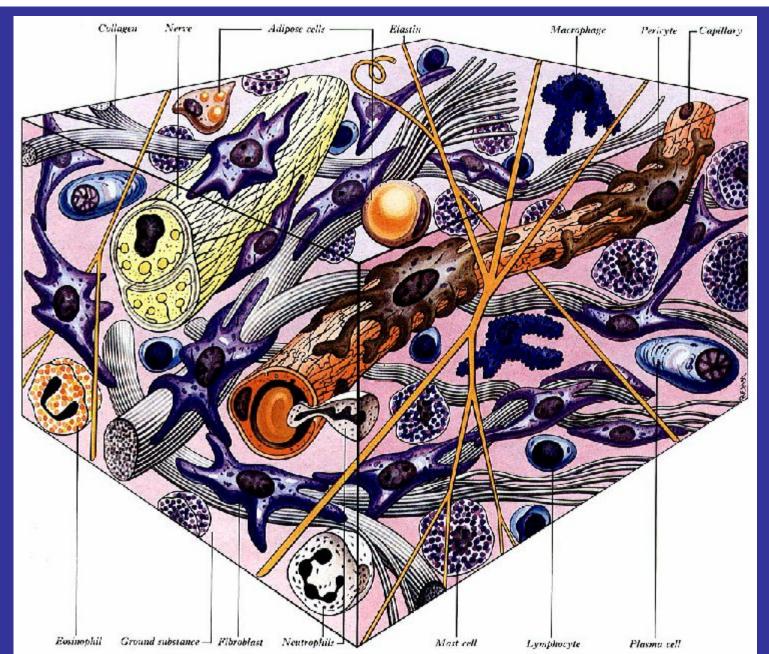
План лекции

- 1. Волокнистые соединительные ткани.
- 2. Их виды и особенности строения.
- 3. Микроскопическое, субмикроскопическое строение, гистохимические характеристики и функции клеток рыхлой соединительной ткани.
- 4. Плотные соединительные ткани, их особенности и локализация в организме.

ВОЛОКНИСТЫЕ (СОБСТВЕННО СОЕДИНИТЕЛЬНЫЕ ТКАНИ)

Рыхлая волокнистая неоформленная

Плотная волокнистая неоформленная


Плотная волокнистая оформленная

Рыхлая волокнистая неоформленная

Особенности: много клеток, мало межклеточного вещества (волокон и аморфного вещества), волокна не упорядочены

Локализация: стенки многих органов, адвентиция сосудов, собственная пластинка слизистых оболочек, подслизистая основа, между мышечными слоями.

Рыхлая волокнистая неоформленная

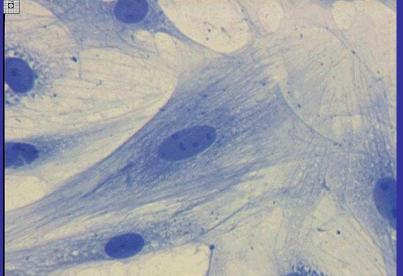
Фибробласты (юные, зрелые, фиброциты, миофибробласты, фиброкласты)

Макрофаги. Образуются из моноцитов крови. Функции – эндоцитоз, представление антигена, выработка БАВ.

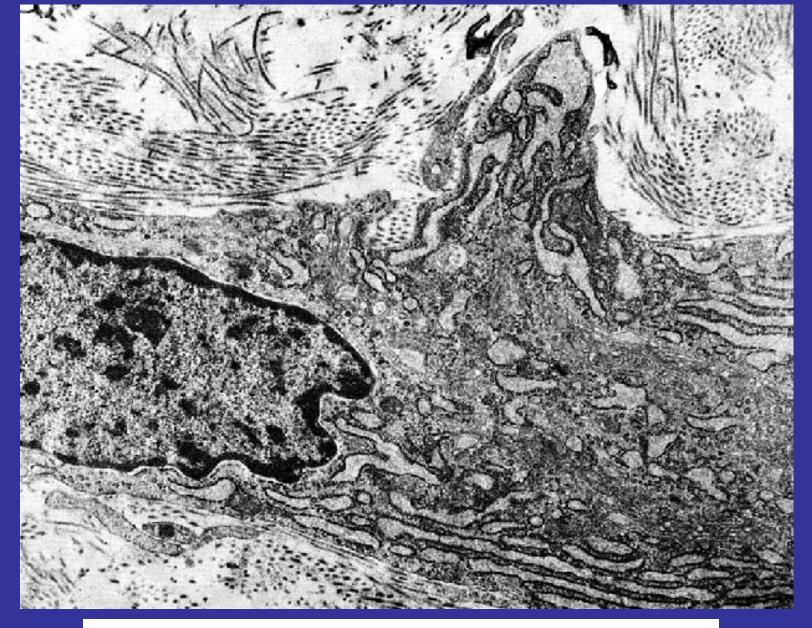
Тучные клетки. В гранулах – гепарин, серотонин, гистамин, химаза, трипаза. Функции –высвобождение содержимого гранул, вторичное поглощение и синтез БАВ.

Адвентициальные клетки, перициты, эндотелиальные клетки, пигментные клетки, жировые клетки, лейкоциты (из сосудов).

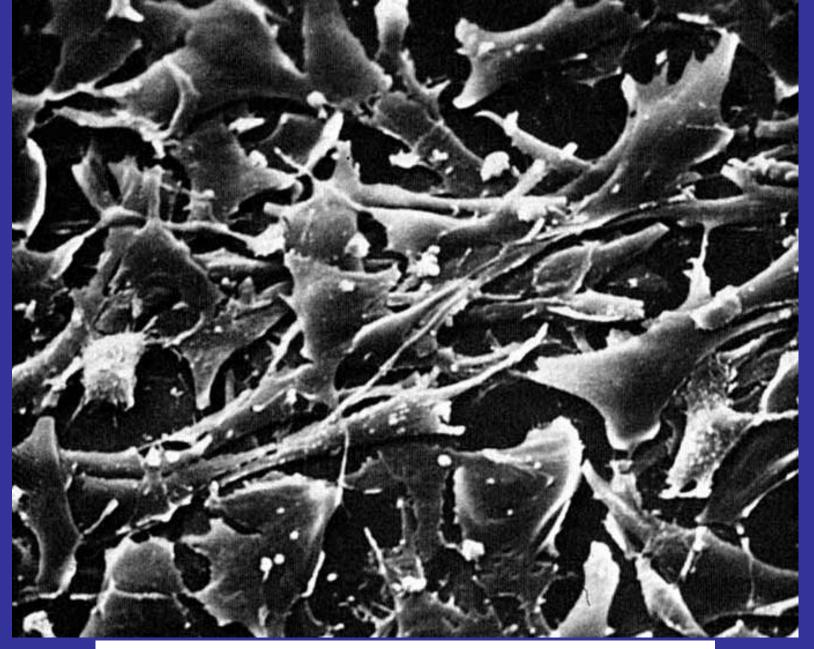
Плазматические клетки (образуются из В-лимфоцитов). Функция – выработка антител.


ФИБРОБЛАСТЫ

МАЛОДИФФЕРЕНЦИРОВАННЫЕ


ЮНЫЕ

ЗРЕЛЫЕ ФИБРОЦИТЫ МИОФИБРОБЛАСТЫ


фиброкласты

Происхож- дение	 а) Фибробласты (1) входят в дифферон, развивающийся из стволовых клеток мезенхимного происхождения. б) Их непосредственными предшественниками являются малоспециализированные фибробласты - клетки с высокой митотической активностью.
Функция	а) Зрелые (дифференцированные) фибробласты не делятся и, как было сказано, активно продуцируют компоненты межклеточного вещества: Ф белки (коллаген и эластин), формирующие волокна; протеогликаны и гликопротеины матрикса.
Ядра	В соответствии с такой высокой синтетической активностью, хроматин в ядрах фибробластов находится в диффузном состоянии и и ядра (овальные по форме) при данном методе окраски выглядят светло-серыми.
Цитоплазма и форма клеток	 а) В цитоплазме хорошо развита шероховатая ЭПС (эндоплазматическая сеть). б) В целом же клетки обычно имеют вытянутую, веретенообразную форму, с большим количеством отростков.
Переме- щение в ткани	Фибробласты способны перемещаться в ткани вдоль волокнистых структур, цепляясь за них, как якорем, специальным белком -

Фибробласт в рыхлой волокнистой соединительной ткани. ГРЭС и комплекс Гольджи. Коллагеновые волокна. Ув. X15 000

Уплощенные фибробласты в культуре. Сканирующая электронная микроскопия. Ув. х500

В обычных условиях образуются фиброциты (узкие, длинные, с небольшим количеством отростков и Фиброцитоплазмы, циты с плотным палочковидным ядром; синтез макромолекул в них почти прекращён. а) А. При инволюции органа появляются фиброкласты, которые активно разрушают межклеточное вещество - путём его • фагоцитирования и Фиброгидролиза в многочисленных лизосомах. класты Б. В их фаголизосомах обнаруживаются, в частности, фрагменты коллагеновых фибрилл. б) Ядра - как у фибробластов, оваљные и относитељно светљие. в) Сами клетки - подобно многим другим клеткам с фагоцитарной активностью, крупные. Мио-Наконец, при регенерации (заживлении ран) могут образовываться миофибробласты: они фибро- способны к сокращению за счёт появления в цитоплазме миофиламентов. бласты

неправиљную форму, чёткие границы, 🔍 плотное (гиперхромное) и тоже неправильной формы ядро,

а в цитоплазме - вакуоли и гранулы (в связи с фагоцитарной функцией).

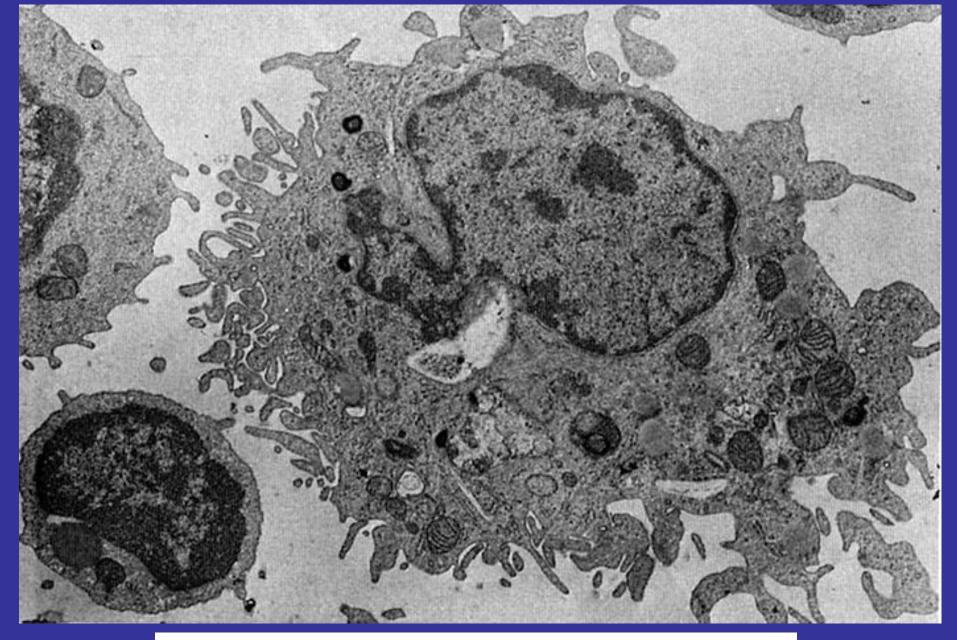
Как отмечалось, макрофаги участвуют в иммунных и других защитных реакциях:

- помогают лимфоцитам узнавать чужеродные вещества;
- выделяют в среду факторы (интерлейкины, гирогены и др.), стимулирующие миграцию и активность лейкоцитов,
- выделяют соединения, непосредственно действующие на

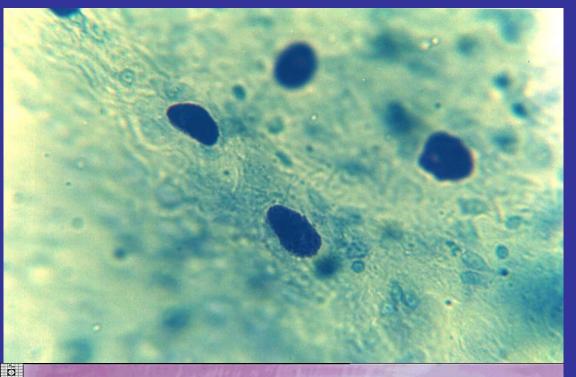
вирусные частицы (интерферон), бактерии (лизоцим) и опухолевые клетки (цитолитические факторы);

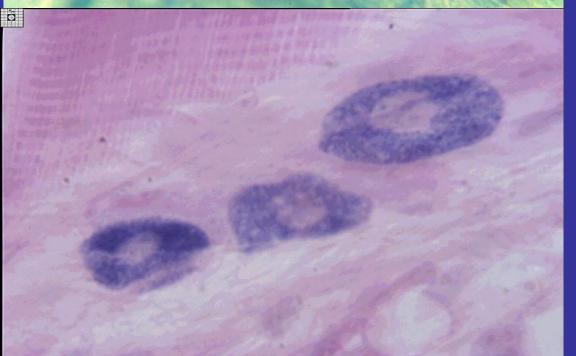
а) Макрофаги (2) имеют

наконец, фагоцитируют клетки и их фрагменты.


Участие в защитных (в т.ч. иммунных) реакциях

Морфо-


погия



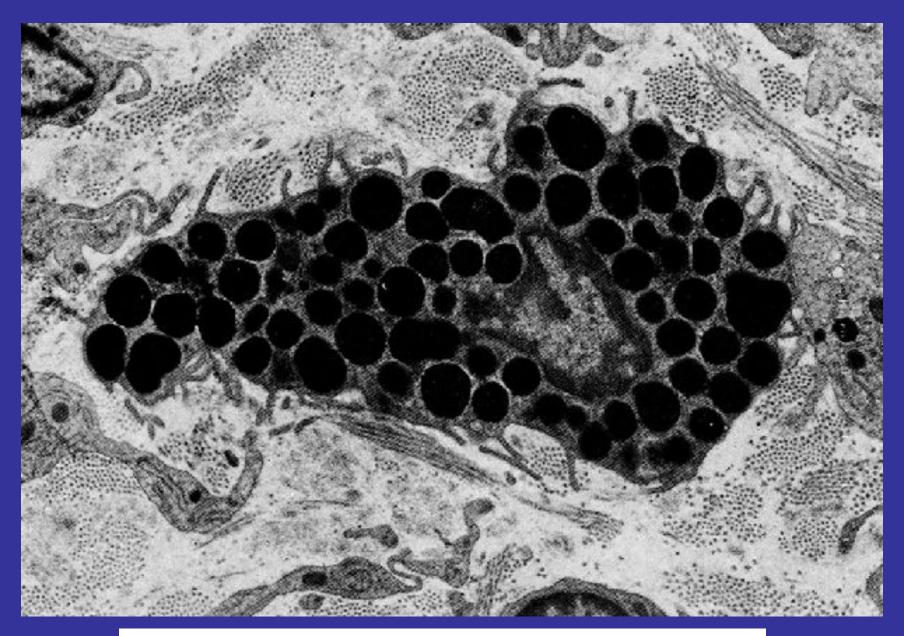
Рыхлая волокнистая соединительная ткань в брыжейке кролика. Внутрибрюшинное введение туши. Частички туши в цитоплазме макрофагов. Коллагеновые и эластические волокна. Окраска по Ван-Гизону. Ув. X 1000

Макрофаг и малый лимфоцит рыхлой волокнистой соединительной ткани. Ув. x6000

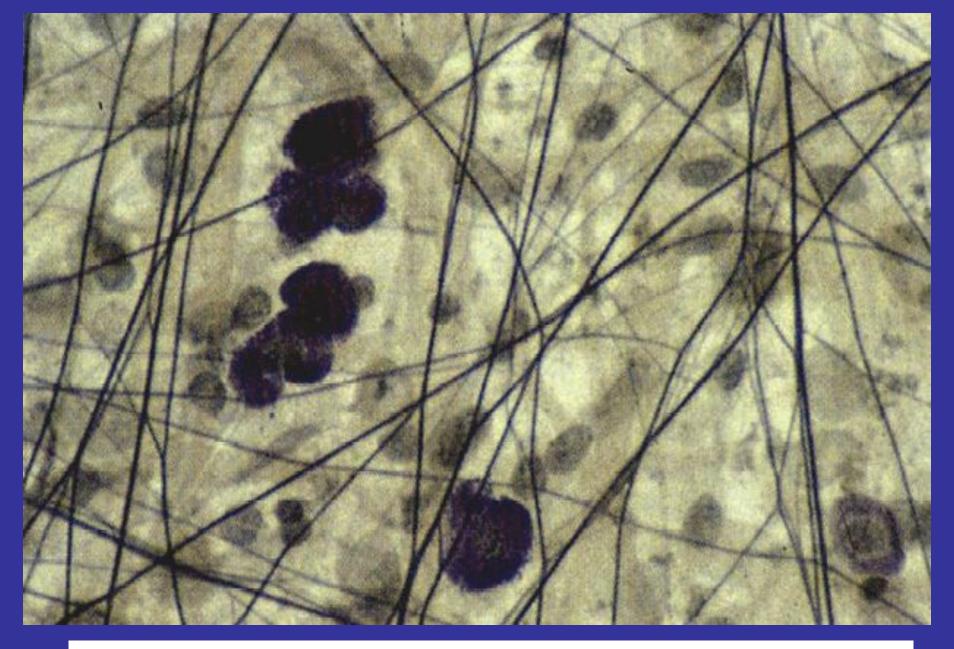
ТКАНЕВЫЕ БАЗОФИЛЫ (ТУЧНЫЕ КЛЕТКИ)

ФУНКЦИИ: СЕКРЕЦИЯ В ПРОЦЕССЕ ДЕГРАНУЛЯЦИИ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ:

□ГЕПАРИН,

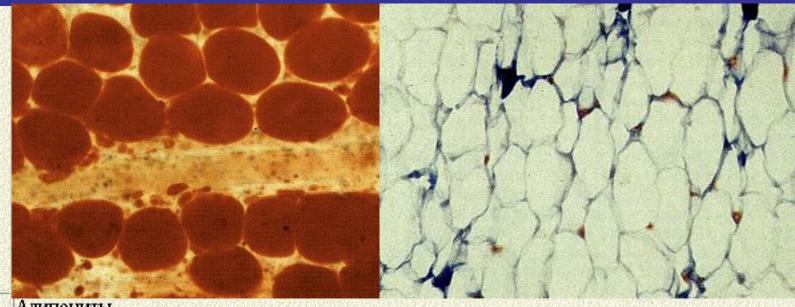

□ГИСТАМИН,

□СЕРОТОНИН,


□ЦИТОКИНЫ,

□ПРОСТАГЛАНДИНЫ И ЛЕЙКОТРИЕНЫ

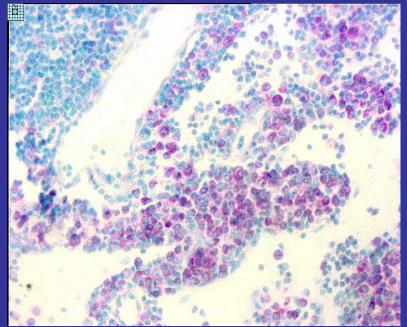
Отличи- тельный признак	Применённая здесь окраска позволяет выявить тучные клетки (1) по наличию в них ● крупных фиолетово-лиловых гранул (с гепарином и гистамином).	
Локали- зация	Как видно, такие клетки располагаются, главным образом, вблизи кровеносного сосуда (2).	
Ядра	Ядра - • относительно небольшие, • окрашены в голубой цвет и • лежат в центре клеток.	
Виды гранул	Гранулы, как у базофилов, бывают двух видов - меспецифические (мелкие, на препарате не различимы) и специфические (крупные).	
Мета- хромазия	Содержимое специфических гранул обладает свой при окраске толуидиновым синим они и красный.	йством <mark>метахромазии</mark> (п. 1.1.4); это значит, что зменяют цвет красителя на фиолетовый или


Крупные, электронноплотные сереторные гранулы в цитоплазме тучной клетки. Ув. x6000

Сеть эластических волокон и тучные клетки в рыхлой волокнистой соединительной ткани брыжейки. Ув. Х 660

Адипоциты

Морфология

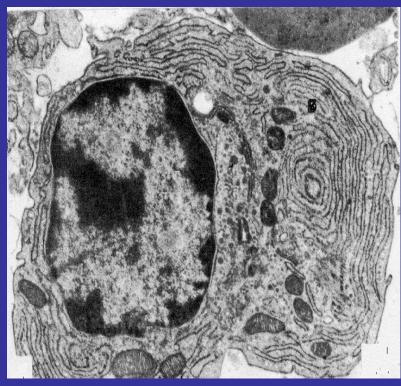

Локализация

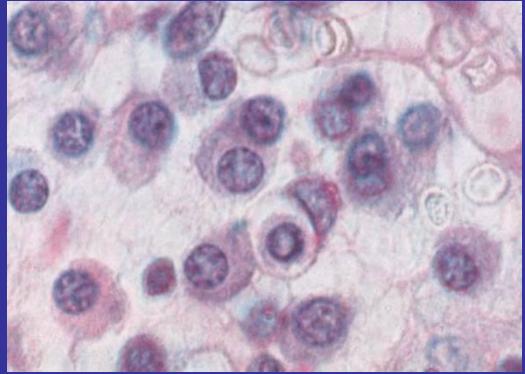
Адипоциты,

- как и тучные клетки, располагаются обычно около кровеносных сосудов,
- но не поодиночке, а группами.

Функция

- а) Функция этих клеток
 - временное депонирование (хранение) нейтрального жира, поступающего из кишечника.
- б) В дальнейшем, по мере необходимости, этот жир расходуется.
- в) Поэтому объём адипоцитов может значительно меняться.

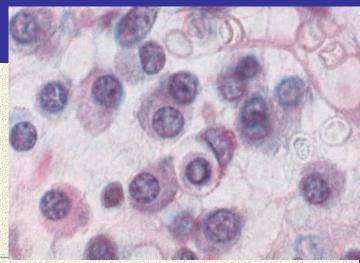



ПЛАЗМАТИЧЕСКИЕ КЛЕТКИ (ПЛАЗМОЦИТЫ)

КОНЕЧНЫЙ ЭТАП ДИФФЕРЕНЦИРОВКИ В-ЛИМФОЦИТОВ

КОРОТКОЖИВУЩИЕ (ОТ 2-3 ДО 10-30 СУТОК)

ВЫРАБОТКА АНТИТЕЛ (ИММУНОГЛОБУЛИНОВ)



Отличительный признак

Данная окраска - на РНК и поэтому позволяет обнаружить плазматические клетки, или плазмоциты (1):

их цитоплазма, в связи с активным синтезом иммуноглобулинов на рибосомах, окрашивается в малиновый цвет.

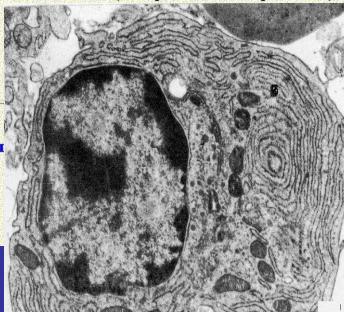
Морфология

а) Ядра плазматических клеток располагаются эксцентрично.

б) А в околоядерной зоне цитоплазмы можно обнаружить светлый (неокрашенный пиронином)

участок -

т.н. дворик (1A);


здесь находятся центриоли и комплекс Гольджи.

Лимфоциты Помимо плазмоцитов, на снимке видны лимфоциты

(2), которые можно узнать по

• более плотному ядру и

узкому ободку цитоплазмы

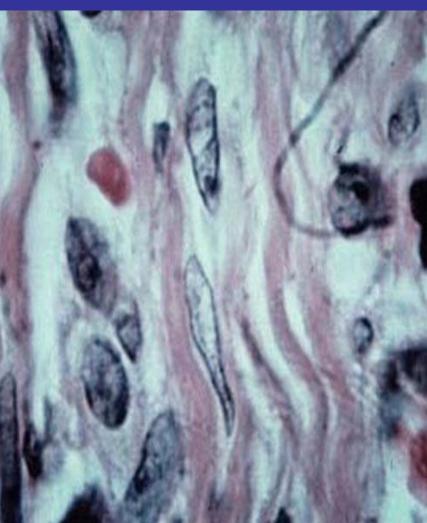
МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО

волокна

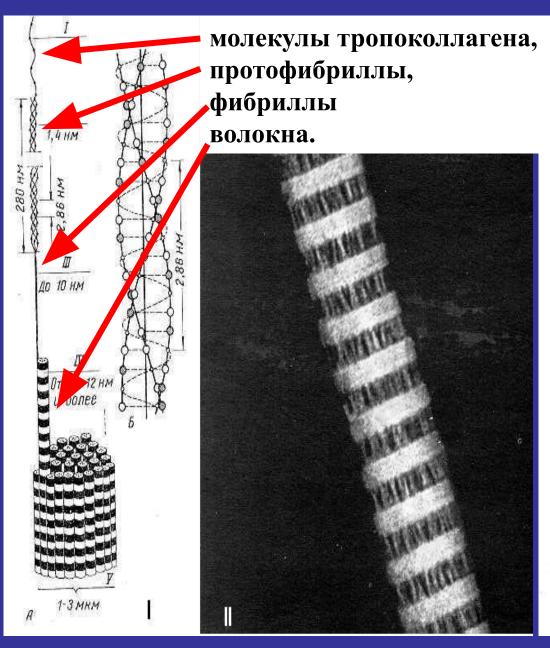
ОСНОВНОЕ АМОРФНОЕ ВЕЩЕСТВО (МАТРИКС)

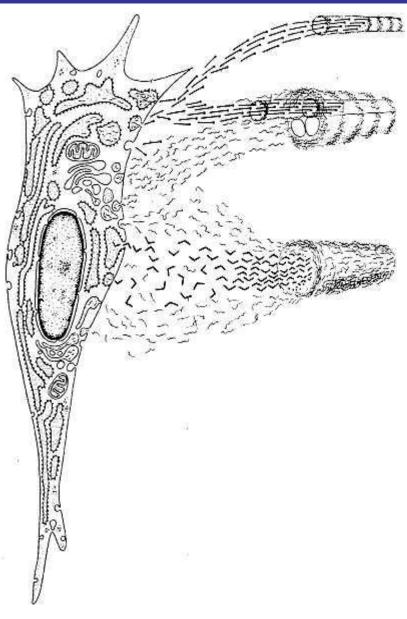
ФИБРИЛЛЯРНЫЕ БЕЛКИ

НЕФИБРИЛЛЯРНЫЕ (АДГЕЗИВНЫЕ) БЕЛКИ


ФИБРОНЕКТИН, ЛАМИНИН

ГЛИКОЗАМИНОГЛИКАНЫ


ГЕПАРИН, ГИАЛУРОНОВАЯ КИСЛОТА, ХОНДРОИТИНСУЛЬФАТЫ, ДЕРМАТАНСУЛЬФАТЫ, КЕРАТАНСУЛЬФАТЫ


КОЛЛАГЕНОВЫЕ ВОЛОКНА

БИОСИНТЕЗ КОЛЛАГЕНА И ОБРАЗОВАНИЕ КОЛЛАГЕНОВЫХ ВОЛОКОН

Полипептидные цепи Особен-

ности состава

Созревание

коллагена

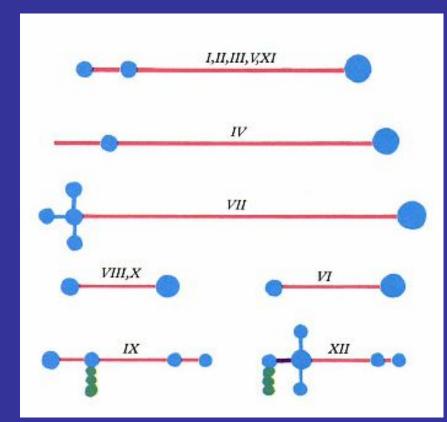
а) Молекула тропоколлагена б) Последние

- имеет палочковидную форму и
- включает три полипентидные цепи.

2,86 HM

- содержат примерно по 1000 аминокислотных остатков и
- спиралеобразно закручены друг относительно друга.

- В этих цепях, независимо от типа коллагена, высоко содержание трёх аминокислотных остатков -
 - Глицина (33 %), пролина и лизина.
- а) А. При созревании коллагена остатки пролина и лизина окисляются в
 - гидроксипролин и гидроксилизин, способные к образованию водородных связей.
- Б. Благодаря этому, становится возможным объединение тропоколлагена в структуры более
- высокого порядка. б) А. Кроме того, к этим аминокислотным остаткам присоединяются боковые олигосахаридные
 - цепи, составляющие т.н.
 - 🍑 углеводный компонент коллагена. Б. Этот компонент значительно повышает гидрофильность коллагена (способность связывать воду).

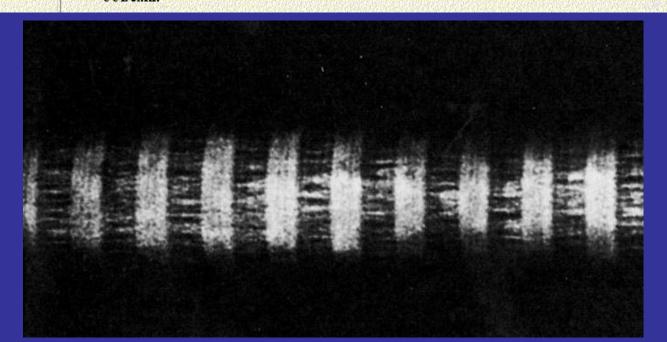

Типы коллагена

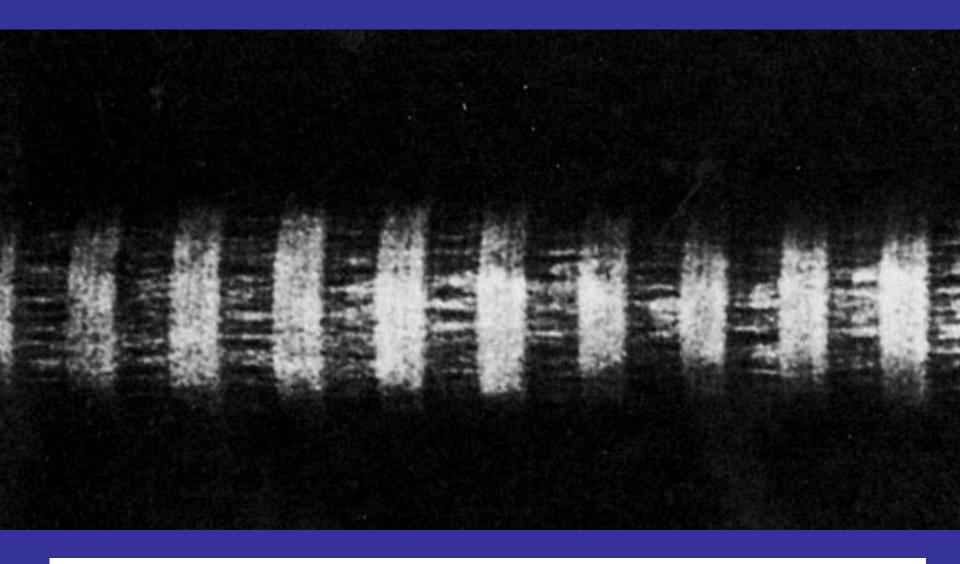
- а) В остальном, аминокислотный и углеводный состав коллагена несколько различается, в зависимости от локализации соединительной ткани.
- б) По этому признаку различают до 15 типов коллагена
 - коллаген I типа встречается в коже, костях, сухожилиях,
 - коллаген П типа в хряще,
 - коллаген Ш типа в ветвящихся ретикулярных волокнах (разновидности коллагеновых), в крупных кровеносных сосудах,
 - коллаген IV типа в базальных мембранах (и т.д.).

Спирализованные молекулы

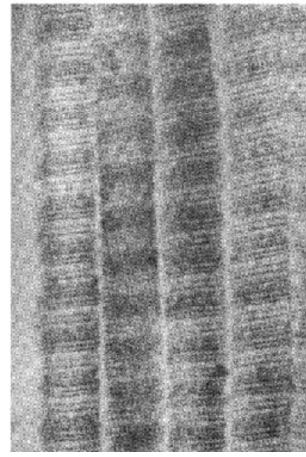
Глобулярные части молекулы

Кислые гликозамингликаны

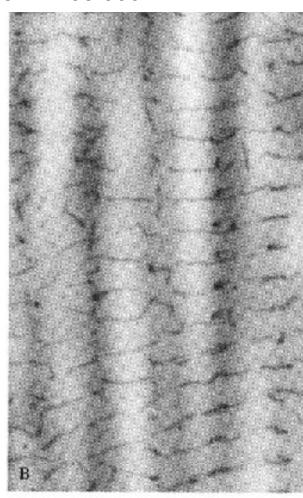


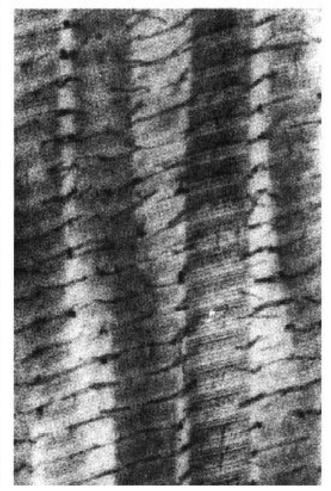

микроскопии). Поперечная б) Исчерченность обусловлена особым способом упаковки молекул тропоколлагена: исчерченмежду следующими друг за другом молекулами имеются промежутки, ность а соседние ряды молекул сдвинуты друг относительно друга по длине. в) На уровне целых волокон поперечная исчерченность уже не наблюдается. а) Коллагеновые волокна имеют

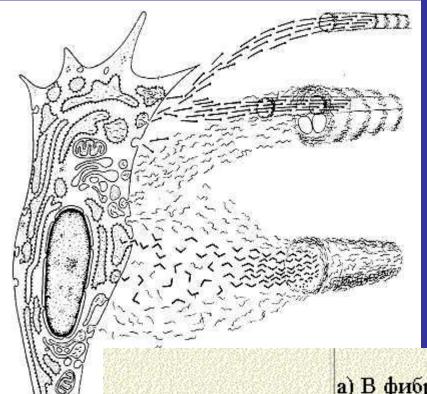
Физические свойства


- малую растяжимость и
- большую прочность на разрыв.
- б) Кроме того, они отличаются
 - высокой способностью к набуханию поглощению воды со значительным увеличением объёма.

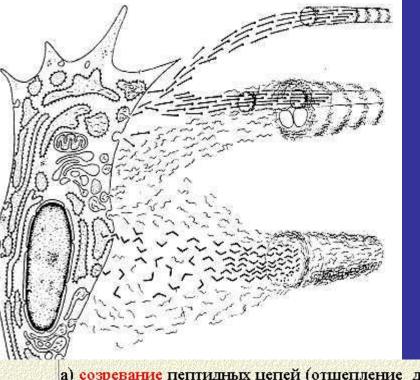
а) Фибриллы имеют поперечную исчерченность (которая видна лишь при электронной




Часть коллагенового волокна 1 типа. Темные полосы соответствуют гидрофильным участкам, включая пространства между филаментами. Ув. X140 000


Характерные повторяющиеся участки 64 нм с вставочными дисками между ними Ув. Х 100.000

Нити протеогликанов, окружающие и соединяющие коллагеновые диски Ув. X 65.000


Волокна протеогликанов, соединяющие диски соседних коллагеновых волокон
Ув. X 65.000

ЭТАПЫ ОБРАЗОВАНИЯ КОЛЛАГЕНОВЫХ ВОЛОКОН

Синтез проколлагена в фибробластах

- а) В фибробластах на рибосомах шероховатого ЭПС синтезируются проколлагеновые цепи (1), объединяющиеся в тройную спираль проколлагена.
- б) При этом концы цепей содержат дополнительные последовательности аминокислот, которые препятствуют объединению молекул в волокна (во избежание разрушения клетки).
- в) Молекулы проколлагена выделяются в межклеточное вещество.

ЭТАПЫ ОБРАЗОВАНИЯ КОЛЛАГЕНОВЫХ ВОЛОКОН

а) созревание пептидных цепей (отщепление дополнительных фрагментов и Формиро- молекулы тропоколлагена (2), вание волокон б) последовательное объединение последних в структуры всё возрастающего уровня вне клеток протофибриллы (3),

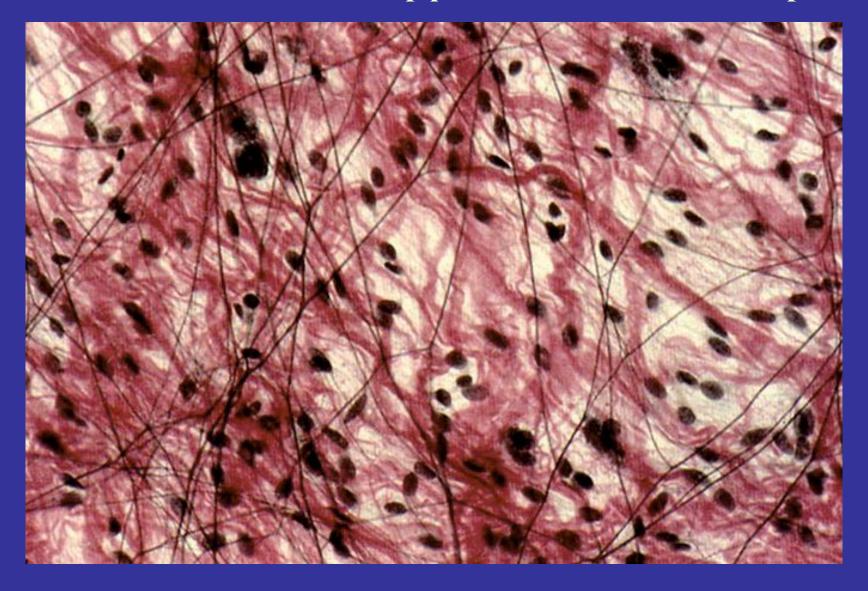
гидроксилирование остатков лизина и пролина), приводящее к превращению проколлагена в

фибриллы (4) и 🔍 волокна. Аналогично формируются другие компоненты межклеточного вещества - эластические волокна Эластические

волокна и аморфное

вещество

(5) и аморфный компонент (б): синтез молекулярных предшественников происходит в фибробластах,


а образование окончательных структур - во внеклеточной среде.

ЭТАПЫ ОБРАЗОВАНИЯ КОЛЛАГЕНОВЫХ ВОЛОКОН

ВНУТРИКЛЕТОЧНЫЕ			
ПРОЦЕССЫ	ОРГАНЕЛЛЫ		
ТРАНСКРИПЦИЯ ГЕНОВ И СИНТЕЗ иРНК	ЯДРО		
ПОГЛОЩЕНИЕ АМИНОКИСЛОТ	ПЛАЗМОЛЕММА		
СИНТЕЗ АЛЬФА-ЦЕПЕЙ	грЭПС		
ГИДРОКСИЛИРОВАНИЕ ПРОЛИНА И ЛИЗИНА	грЭПС		
ОБРАЗОВАНИЕ МОЛЕКУЛЫ ПРОКОЛЛАГЕНА	грЭПС		
ГЛИКОЗИЛИРОВАНИЕ ПРОКОЛЛАГЕНА	КОМПЛЕКС ГОЛЬДЖИ		
УПАКОВКА В СЕКРЕТОРНЫЕ ПУЗЫРЬКИ И ВЫВЕДЕНИЕ НА ПОВЕРХНОСТЬ ФИБРОБЛАСТОВ	КОМПЛЕКС ГОЛЬДЖИ		
ВНЕКЛЕТОЧНЫЕ			
ПРЕВРАЩЕНИЕ ПРОКОЛЛАГЕНА В ТРОПОКОЛЛАГЕН	ПЛАЗМОЛЕММА		
ПОЛИМЕРИЗАЦИЯ ТРОПОКОЛЛАГЕНА В ФИБРИЛЛЫ И ВОЛОКНА			

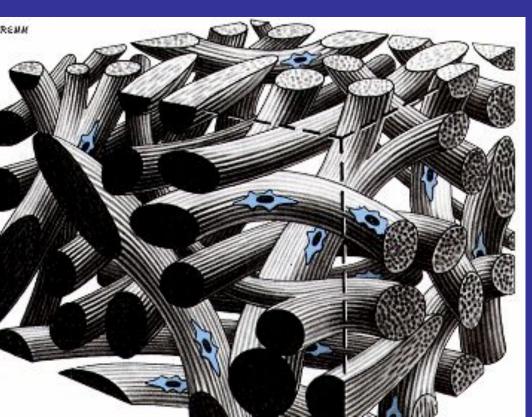
Эласти- ческие волокна	 обычно тонкие, иногда разветвлены и образуют друг с другом многочисленные связи (анастомозы).
	б) Они образованы глобулярным белком эластином (включающим одну полипептидную цепь).
	в) А. Эти глобулярные молекулы с помощью остатков лизина соединяются в цепочки (протофибриллы), обладающие
	© способностью к растяжению и● эластичностью.
	Б. При этом два взаимодействующих остатка лизина превращаются в необычное производное - десмозин или изодесмозин.
	г) А. Протофибриллы образуют далее
	 микрофибриллы, которые объединяются вокруг гликопротендного аморфного компонента в волокна.
	Б. Таким образом, в эластическом волокне
	 в центре находится аморфный компонент, а по периферии - микрофибриллы из эластина.
1	

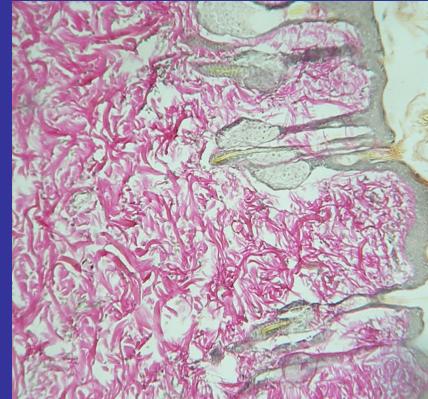
Основное (аморфное) вещество: гомогенная и слабоокрашенная субстанция, которая заполняет пространство между клетками и волокнами. Консистенция аморфного вещества — желеобразная.

протео- гликаны	© сульфатированные глюкозамингликаны (хондроитинсерная кислота и др,);
	б) Последние обычно связаны с белками, образуя <mark>протеогликаны</mark> .
Другие компо- ненты	Кроме того, в составе аморфного вещества могут быть □ гликопротеины (белки с олигосахаридными боковыми цепями), синтезируемые фибробластами;
	● белки, поступающие из плазмы крови:
	 альбумин (60 % всего альбумина организма)
	 и глобулины;
	• неорганические ионы, которые также поступают из крови.
Изменения состояния	Степень полимерности глюкозамингликанов веществ может меняться (например, под влиянием гиалуронидазы), а с ней - и
	🔍 проницаемость аморфного вещества для диффундирующих в нём соединений.

а) Главный компонент этой субстанции - глюкозамингликаны –

длинные цепи гиалуроновой кислоты, а также


Состав:


Type of GAG chain	Abbreviation	Repeating disaccharide unit	Typical structure	Linkage to protein	Molecular mass (kDa)
	Interstitial AGAGs				
'		β1:4,1:3 glycans	co CHUNH		
Hyaluronan	HA	GlcUA-GlcNAc	a on hour	No link to protein	1000
Chondroitin-4-sulphate	CS4	GlcUA-GalNAc	OH HJCOSCI,	O-linked	10-50
Chondroitin-6-sulphate	CS6	GlcUA-GaINAc	000000000000000000000000000000000000000	O-linked	10-50
Keratan sulphate	KS	GlcNAc-Gal	OH 8 SHJOH	N or O linked	3-25
Dermatan sulphate	DS	GIcUA or L-IdoUA }→ GalNAc	0 000	O-linked	10-50
1/	Membrane-associated AGA	ιGs α1:4,1:4 glycans	8.333		
Heparan sulphate	HS	$ \begin{cases} GlcUA \\ or \\ L-IdoUA \end{cases} \rightarrow \begin{cases} GlcNAc \\ or \\ 2-sulpha \\ 2-deoxy \end{cases} $	malo- D-glucose	Q-linked	7–40
		Interstitial	proteoglycans		
Types of proteoglycan	Covalently linked AGAGs	Good sources	Molecular mass (kDa)	Shape	Location or function
Small	CS4, CS5	Carillage, i.v. disc	100		Collagen fibril associated
	or DS or KS 1 or 2 chains	tendon, skin solera cornea, i.v. disc cartilage		~	Tori associated
Large	CS and DS 5-10 chains	skin, sclera tendon	200	7/1-	interfibrillar, spacefilling
Very large	CS4, CS5 and KS 100 chains	canilage, i.v. disc, blood vessels	1000-2000	-	Interfibrillar, spacefilling

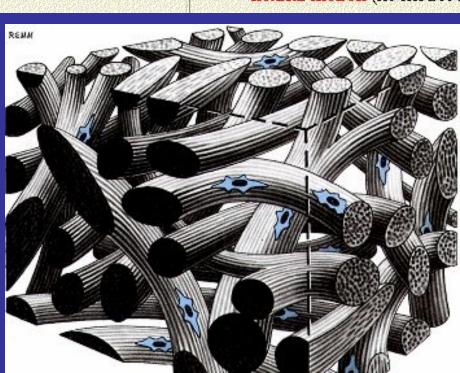
Плотная волокнистая неоформленная

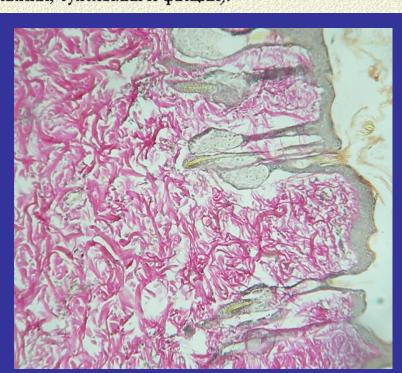
Особенности: мало клеток, много волокон и волокна не упорядочены

Локализация: сетчатый слой кожи, надкостница, надхрящница.

Отличительная черта Отличительная черта этих тканей -

преобладание волокнистого компонента над аморфным в межклеточном веществе.

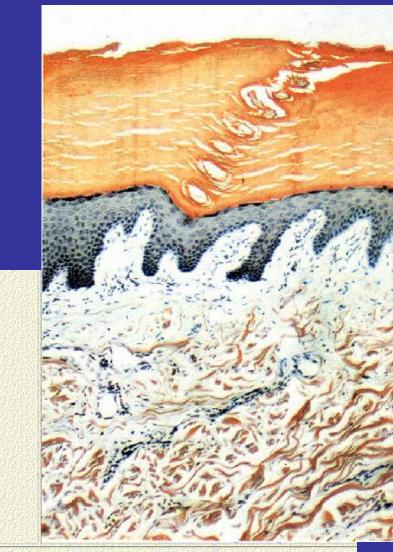

Принцип деления на два вида Как отмечалось, различают два вида данных тканей:


- в неоформленной ткани волокна идут в различных направлениях,
- а в оформленной строго упорядоченно.
- б) В обоих случаях направление волокон определяется функциональной нагрузкой на то или иное образование.

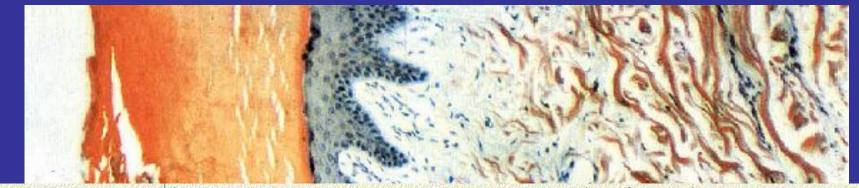
Подвиды оформленной ткани

В свою очередь, плотная волокнистая оформленная ткань может быть

- эластической (выйная связка) и
- коллагеновой (почти все прочие связки, сухожилия и фасции).



Локализация двух видов соединительной ткани в коже В коже присутствуют два вида волокнистой соединительной ткани:


а) уже знакомая нам рыхлая волокнистая соединительная ткань (1) -

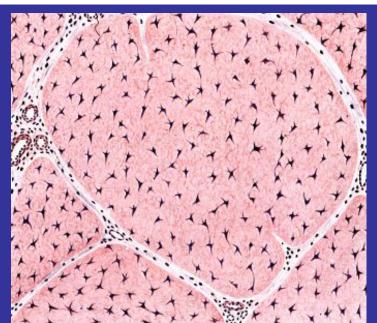
● в т.н. сосочковом слос кожи,

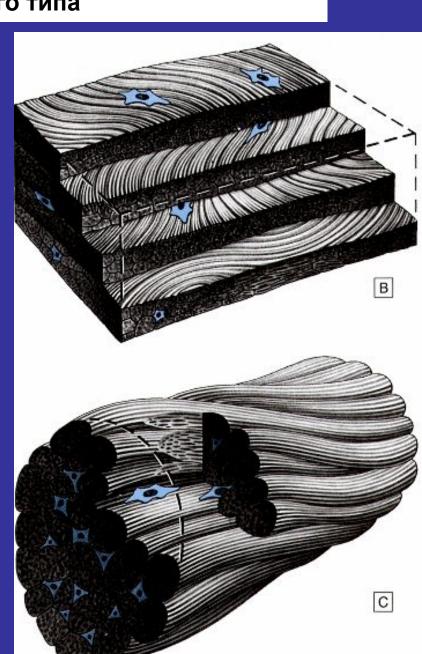
который лежит непосредственно под эпителием (вдаваясь в него глубокими сосочками), и

- б) плотная неоформленная волокнистая соединительная ткань (2) -
 - в более глубоком сетчатом слое кожи.

Рыхлая соединительная ткань

- а) В первом из этих слоёв содержатся коллагеновые (оксифильные) и эластические волокна (неокрашенные); причём, те и другие
 - являются тонкими и
 - располагаются рыхло.
- б) Между ними видны
 - ядра клеток, обычных для рыхлой соединительной ткани, и
 - основное (слабоокрашенное) аморфное вещество.


Плотная неоформленная соединительная ткань


- а) Во втором (сетчатом) слое
 - коллагеновые волокна объединены в толстые пучки, плотно прилегающие друг к
 другу (что и делает ткань плотной),
 - а пучки волокон ориентированы в различных направлениях (отчего ткань является неоформленной).
- б) Из-за большего содержания коллагеновых волокон,
- в данном слое кожи более выражена оксифилия межклеточного вещества, чем в предыдущем.
- в) Эластические волокна образуют сеть, хотя не окрашены и поэтому вновь не видны.
- г) Клетки представлены, главным образом, фибробластами...

Плотная волокнистая оформленная Ткань коллагенового типа

Особенности: мало клеток, много волокон и волокна собраны в пучки (упорядочены)

Локализация: сухожилия, связки, капсулы, фасции, фиброзные мембраны.

Сухожилие

Суставная капсула

Пучки коллагеновых волокон окружены прослойками рыхлой волокнистой неоформленой соед. ткани. Тонкие пучки (1-го порядка) покрыты эндотенонием. 2-го — притенонием.

Слои –фиброзный (наружний) и синовиальный. В последнем – синовиальные фибробласты и синовиальные макрофаги. В крупных суставах – подсиновиальный слой (соединительная ткань с большим количеством жировых клеток).

Компо-	Ретикулярная ткань состоит из	Ретикулярная ткань	
ненты	 ретикулярных клеток (ретикулоцитов) и 		
ткани	 ретикулярных (или аргирофильных) волокон 		
Ретику- лоциты	 а) Ретикулярные клетки (1) похожи на фибробласты крупные, имеют отростчатую форму, в центре содержат ядро округлой формы. б) Но при этом они стыкуются друг с другом отростками и связаны с волокнами. 		
Ретику- лярные волокна	а) Что касается ретикулярных волокон, то они, как уже отмечалось, являются разновидностью коллагеновых волокон (состоят из коллагена Ш типа и их фибриллы тоже обладают поперечной исчерченностью), но отличаются высоким содержанием серы (в составе углеводного компонента). б) Последней особенностью обусловлены их аргирофильность (сродство к соединениям серебра), высокая способность ветвиться и образовывать друг с другом многочисленные связи (анастомозы) и отсутствие способности к набуханию. в) Кроме того, эти волокна тоньше типичных коллагенвых волокон.		

 в сальнике, в жировых отложениях вокруг внутренних органов, в диафизах трубчатых костей (жёлтый костный мозг) и т.д. 	 ■ за грудиной и в некоторых других местах. б) У взрослого человека находится в воротах почек и в корнях лёгких.
2. В клетках ядра оттеснены к периферии.	2. Ядра расположены в центре клеток.
3. В клетках - одна большая жировая капля.	3. В клетках - много мелких жировых капель.
4. Количество митохондрий невелико.	4. В цитоплазме - много митохондрий (откуда - бурый цвет ткани).
5. Функции ткани: депонирование жира, ограничение теплопотерь, механическая защита.	 5. Функция - обеспечение теплопродукции.

Иными словами, главное функциональное различие состоит в том, что

теплопродукции

Белая жировая ткань

жир из белой жировой ткани расходуется, главным образом,

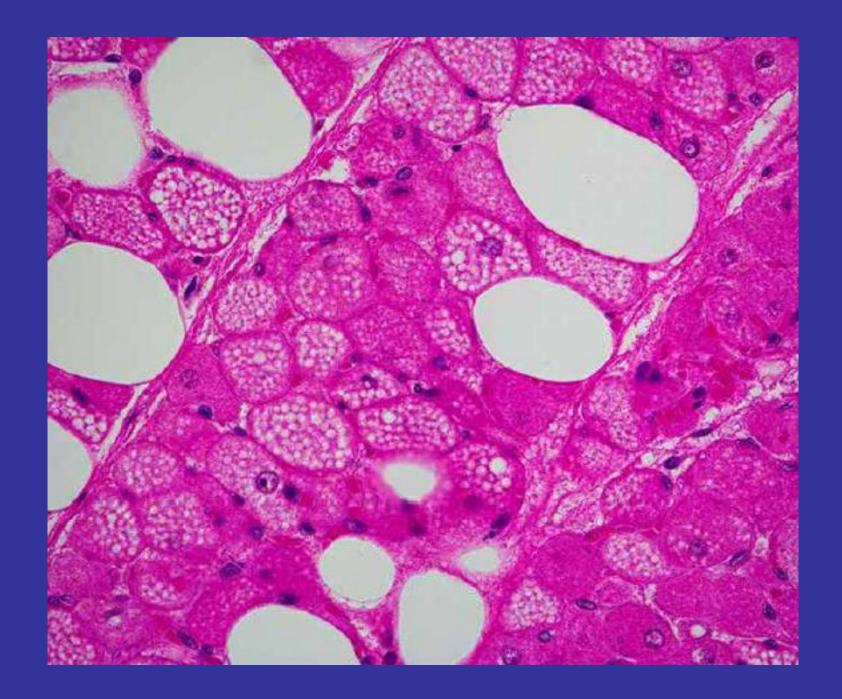
1. Широко распространена у человека: в т.ч. находится

в подкожной жировой клетчатке,

не в ней самой, а

в иных органах и тканях,

Бурая жировая ткань


а жир бурой жировой ткани расщепляется для обеспечения

непосредственно в ней самой.

1. а) Встречается у новорождённых детей

в области лопаток,

