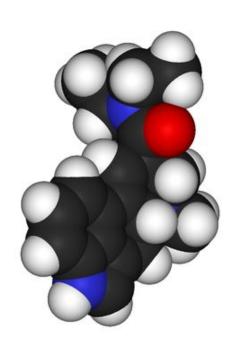
Органическая химия

курс лекций для студентов геолого-географического факультета

Литература

- 1. Березин Б.Д., Березин Д.В. Курс современной органической химии. М.: Высшая школа, 1999. 768 с.
- 2. Нейланд О.Я. Органическая химия. М.: Высшая школа, 1990. 751 с.
- 3. Несмеянов А.Н., Несмеянов Н.А. Начала органической химии. М.: Высшая школа, 1999.
- 4. Шабаров Ю.С. Органическая химия. М.: МГУ, 1994
- 5. Артеменко А.И. Органическая химия. М.: Мир, 1986.

Органическая химия

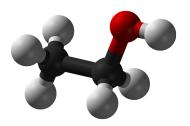

Химия соединений углерода – определение

устаревшее

- 1. Углеводороды (алифатические, ароматические, ациклические, циклические)
- 2. Соединения, содержащие гетероатомы (O, N, S, P etc.)
- 3. Галогенпроизводные углеводородов (F, Cl, Br, I)
- 4. Гетероциклические соединения
- 5. Конденсированные системы etc.

Химия углеводородов и их функциональных производных

Понимание теории строения органических соединений лежит в **теории А.М. Бутлерова**



Теория строения органических соединений А.М. Бутлерова

- 1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами.
- 2. Свойства веществ зависят от их химического строения. Химическое строение это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга как соседних, так и через другие атомы. Изменение строения вещества приводит к явлению изомерии.
- 3. Атомы в молекуле оказывают взаимное влияние друг на друга вне зависимости от их расположения
- 4. Химическое строение вещества можно установить по его химическим и физическим свойствам. По строению вещества можно судить о его химических или физических свойствах.

Наглядный пример теории А.М. Бутлерова

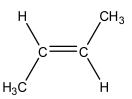
Этанол и диметиловый эфир – два соединения с одинаковой формулой С₂H₆O

3638

- Жидкость
- Температура плавления –114 °C
- Температура кипения 78 °C
- Плотность 0,789 г/мл
- Реагирует с натрием
- Реагирует с неорганическими и органическими кислотами
- Способен к дегидратации с образованием этилена
- Окисляется до ацетальдегида и далее до уксусной кислоты

- Газ
- Температура плавления –139 °C
- Температура кипения –25 °C
- Плотность 0,00209 г/мл
- С натрием не реагирует
- С кислотами не реагирует
- Не вступает в реакцию дегидратации
- Не окисляется

Явление изомерии


Структурная – результат различий в строении молекулы

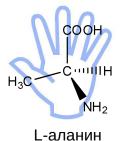
$$H_3C$$
 CH_2
 CH_2
 CH_3
 CH_3

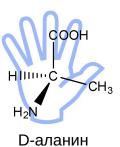
 CH_2 CH_3 CH_3 CH_3 изопентан; 2-метилбутан

Пространственная – результат расположения фрагментов молекулы в пространстве

H₃C CH₃

цис-2-бутен


транс-2-бутен


Изомерия положения, обусловленная различным положением функциональных групп

пропанол-1

пропанол-2

Оптическая изомерия, обусловленная наличием в молекуле хирального центра

Номенклатура

3 типа: тривиальная (историческая), рациональная и IUPAC

Названия:

Метан Этан Пропан Бутан

Пентан (пента = 5)

 Γ ексан (Γ екса = 6)

 Γ ептан (Γ епта = 7)

Октан (окта = 8)

Hohah (ноha = 9)

Декан (дека = 10)

Суффиксы:

Моно = 1 (не называется)

 $\Delta u = 2$

Три = 3

Тетра = 4

Пента = 5

Непредельные соединения называются таким же образом с соответствующим окончанием в зависимости от номинала кратных связей и их количества (нумеруются соответствующие атомы углерода, добавляются суффиксы)

Кратность связей:

ен – одна двойная связь ин – одна тройная связь

Окончания:

ол – спирт он – кетон аль – альдегид овая – кислота

Остатки называются с заменой суффикса на «ил» метан – метил

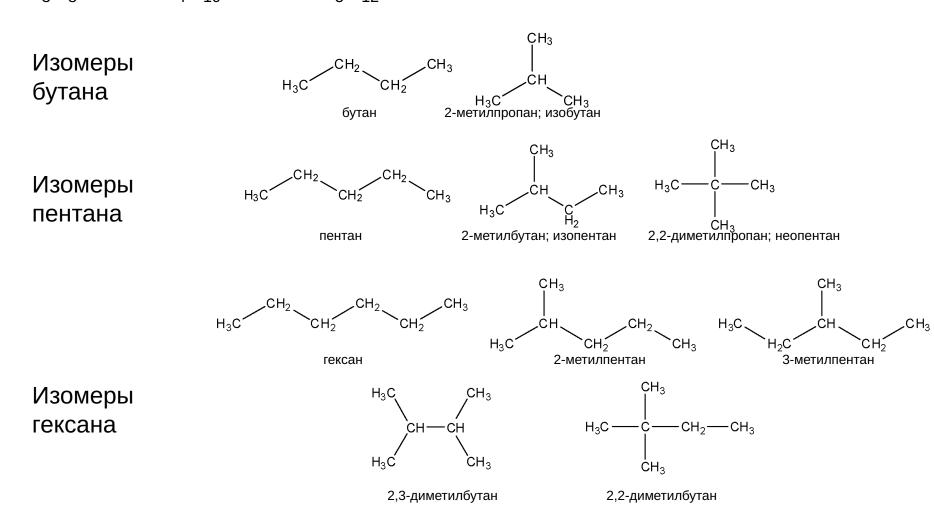
Номенклатура

$$H_3$$
С H_2 H_3 С H_3 H_3 С H_3 С H_4 H_4 С H_5 H_5 С H_5 H_5 С H_5 H_6 С H_6 H_6 С H_6 H_6 С H_6 H_6 С H

Атомы углерода: первичный, вторичный, третичный

$$H_3$$
С H_2 H_3 С H_3 С H_4 С H_4 С H_5 С

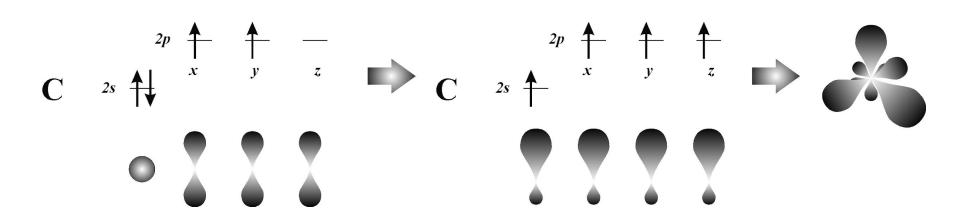
Алгоритм наименования органических соединений


- 1. Выбираем цепь с максимальным числом атомов углерода и называем её это окончание названия нашего соединения
- 2. Нумеруем атомы углерода, у которых есть заместители. Сумма цифр номеров заместителей должна быть минимальной
- 3. Называем заместители и в названии нашего соединения располагаем их в порядке возрастания молекулярной массы
- 4. Полностью называем соединение

$$CH_2$$
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3

$$H_3$$
С H_2 H_3 С H_3 H_3 С H_3 С H_4 H_4 С H_5 H_5 С H

Углеводороды: алканы


Углеводороды с общей формулой C_nH_{2n+2} . Атомы углерода связаны обычной одинарной связью. Гомологический ряд — метан CH_4 , этан C_2H_6 , пропан C_3H_8 , бутан C_4H_{10} , пентан C_5H_{12} и т.д., а также, начиная с бутана, изомеры.

Возбуждение атома углерода:

гибридизация

Физические свойства

Первые четыре алкана (метан, этан, пропан, бутан) – газы Пентан и далее до цетана (С₁₆Н₃₄) – жидкости, далее – твёрдые вещества

Алкан	Температура, °С	
	плавления	кипения
Метан	-183	-162
Этан	-172	-89
Пропан	-187	-49
Бутан	-138	0
Изобутан	-159	-12
Пентан	-130	36
Неопентан	-17	10
Гексан	– 95	69

Механизм радикальных реакций

1. Инициирование – необходимо для протекания радикальных реакций

2. Рост цепи

3. Рост цепи

По радикальному механизму идут очень многие реакции алканов: галогенирование, сульфохлорирование, нитрование

Алканы: реакционная способность

Реакция

хлорирования

Типичная реакция радикального замещения, характерная для углеводородов, со множеством продуктов

Селективность

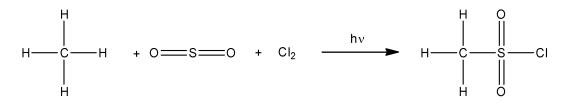
$$H_3C$$
 CH_2
 CH_3
 H_3C
 CH_2
 CH_3
 H_3C
 CH_3
 CH_2
 CH_2

Алканы: реакционная способность

Скорость замещения водорода в молекулах УВ зависит от энергии связи углерод-водород. Для вторичного атома углерода такая энергия ниже на ~12,5 кДж/моль

Температура, °С	Первичный	Вторичный	Третичный
200	1	3,9	5,1
300	1	3,3	4,4
600	1	1	1

Атомы углерода: первичный, вторичный, третичный (радикалы)


первичный	вторичный	третичный
——CH ₃	——CH ₂ ——	——сн——

Для реакций с участием углеводородов реакционная способность снижается в ряду третичный > вторичный > первичный

Бромирование идёт гораздо более селективно, фторирование – совсем неселективно

Реакции

1. Сульфохлорирование

2. Нитрование (реакция Коновалова)

3. Крекинг

$$H_3C - CH_2 - CH_3 - OH_3 - OH_4 + H_2C - CH_2 + H_2C - CH_3 + etc.$$
(15%) (40%) (20%) (25%)

Синтез и получение

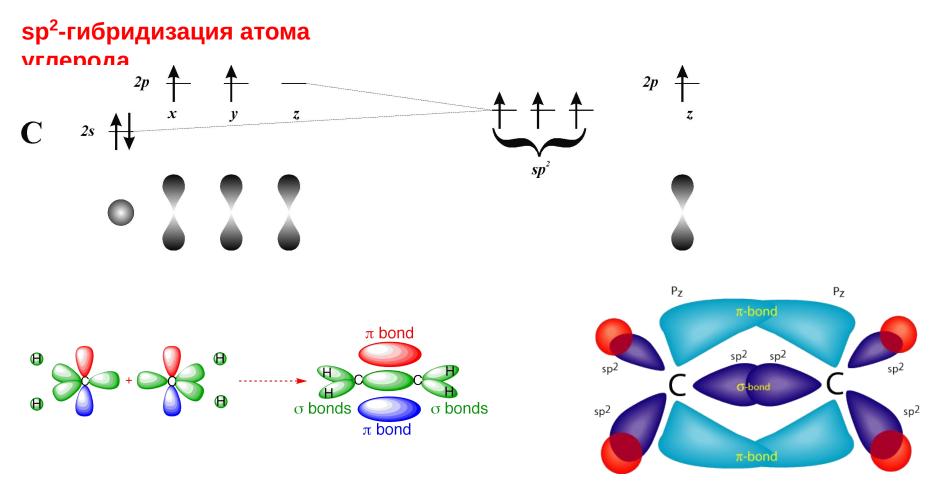
Природный газ – метан (до 95%)

$$C_5 - C_{40} -$$
нефть

Крекинг – образование алканов с более короткой цепью и разветвлённых

Реакция Вюрца

Электролиз солей органических кислот (реакция Кольбе)


Алкены

Соединения с общей формулой C_nH_{2n} , содержащие двойную углерод-углеродную связь. Гомологический ряд – этилен (этен) C_2H_4 , пропилен (пропен) C_3H_6 , бутилен (бутен) C_4H_8 etc. Бутилен и высшие гомологи обладают структурной и пространственной изомерией.

$$H_3$$
С CH_2 CH_2 CH_3 CH_3 CH_3 CH_4 CH_3 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 CH_8 CH_9 CH_9

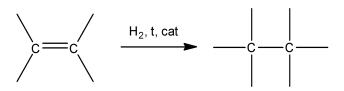
Алкен	Температура, °С	
	плавления	кипения
Этилен	-169	-104
Пропилен	-186	-47
1-бутен	-130	- 6
Изобутилен	-140	-7
Цис-2-бутен	-139	4
Транс-2-бутен	-105	1

Строение алкенов

sp²-орбитали лежат в плоскости молекулы, угол между ними составляет 120°. Негибридизованные р-орбитали расположены над плоскостью молекулы, перекрывание этих орбиталей представляет собой π-связь.

Изомерия и номенклатура

$$H_2C$$
 CH_3 CH_3 CH_3 CH_3


Структурная

$$C = C$$

Химические свойства алкенов

Во многом обусловлены наличием двойной углерод-углеродной связи

Гидрирование

(давлении)

Чем больше степень замещения при двойной связи, тем устойчивее алкен. Устойчивость изменяется в ряду

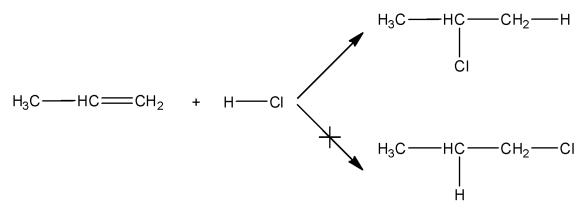
$$R_2C=CR_2 > R_2C=CHR > R_2C=CH_2 > RCH=CHR > RCH=CH_2 > CH_2=CH_2$$

Электрофильное

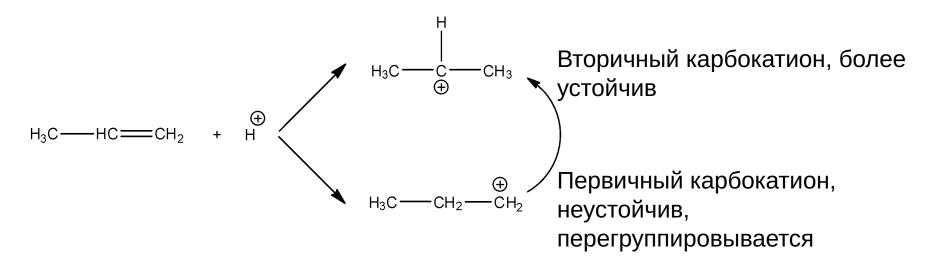
Врисоединение участвуют галогены, галогенводороды, вода, кислоты и другие электрофильные реагенты.

Эти реакции отличаются очень высокой селективностью (90-100%) и протекают по ионному механизму

$$C = C \qquad E \qquad C \qquad C \oplus \qquad E \qquad C \longrightarrow C \longrightarrow C \longrightarrow Nu$$


Механизм реакции присоединения

Гидрогалогенирование


Реакция протекает по **правилу Марковникова**: присоединение идёт с образованием продукта, в котором водород присоединяется к наиболее замещённому атому углерода.

Это обусловлено стабильностью образующихся карбокатионов

Присоединение по правилу Марковникова

В данном случае образуется 2-хлорпропан, что обусловлено большей стабильностью карбокатиона

Устойчивость карбокатионов: третичный >> вторичный >> первичный

Алкены: свойства

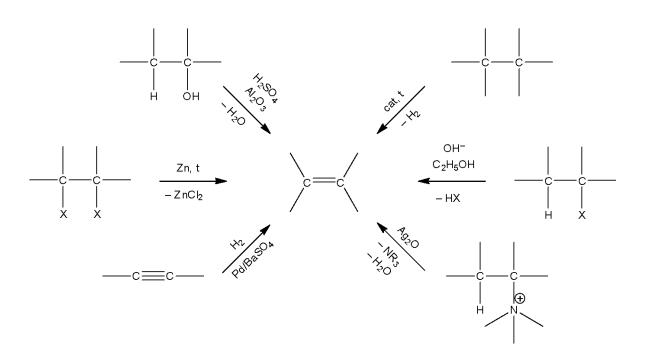
Присоединение против правила Марковникова происходит при наличии электроноацепторных групп (NO₂, CN, COOH etc.), а также в присутствии перекисей (для бромистого водорода) – перекисный эффект Хараша

Гидратация (получение спиртов), образование галогенгидринов

Алкены: свойства

Окисление перманганатом (при 10 °C – реакция Вагнера)

Радикальное замещение

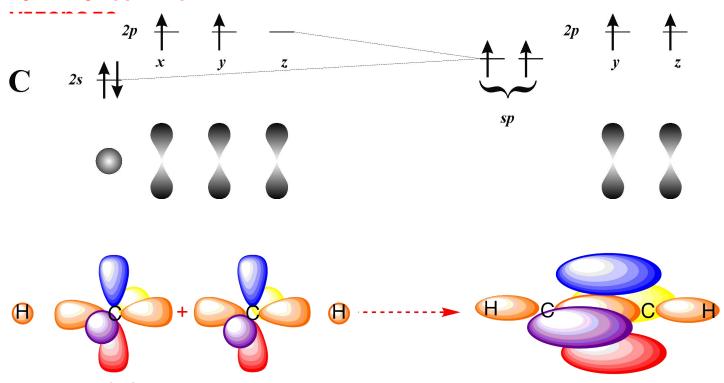

Озонировани

e
$$c = c$$
 $c = c$ $c = c$ $c = c$ $c = c$

Реакция Прилежаева

$$C = C$$
 + R $C = C$ OH OH

Алкены: синтез


Алкины

Соединения с общей формулой C_nH_{2n-2} , содержащие тройную углеродуглеродную связь. Гомологический ряд — ацетилен (этин) C_2H_2 , метилацетилен (пропин) C_3H_4 , бутин C_4H_6 etc. Пентин и высшие гомологи обладают структурной изомерией.

Алкен	Температура, °С	
	плавления	кипения
Ацетилен		-84
Метилацетилен	-104	-23
1-бутин	-130	8
2-бутин	-28	27

Строение алкинов

sp-гибридизация атома

sp-орбитали имеют линейное строение, угол между ними составляет 180°. Негибридизованные р-орбитали расположены над и под плоскостью молекулы, перекрывание этих орбиталей представляет собой две π-связи.

Химические свойства алкинов

Гидрирование

Галогенирование

$$-c = c - \frac{x_2}{x} = c - \frac{x_2}{x} - \frac{x$$

Гидрогалогенирование

$$-c = c - \frac{HX}{C} = c \times \frac{HX}{C} = \frac{1}{C} \times \frac{1}{C} \frac{1}{C} \times \frac{1}{C} \times \frac{1}{C} = \frac{1}{C} \times \frac{1}{C} \times$$

Окисление

Химические свойства алкинов

Гидрирование

$$R - C = C - Na - R - C = C - H - R - C = C - Ag$$

Гидратация (реакция Кучерова)
$$H = C = C + H$$

$$R_1$$
— $C = C$ — $R_2 \xrightarrow{H_2O}$
 $R_1 \xrightarrow{H_2SO_4}$
 $R_1 \xrightarrow{H_2SO_4}$
 $R_1 \xrightarrow{H_2SO_4}$
 $R_1 \xrightarrow{R_2}$
 $R_1 \xrightarrow{R_2}$

Изомеризация (реакция

Алкины: синтез

$$R_1$$
— C \equiv C — H $\xrightarrow{Na / NH_3}$ R_1 — C \equiv C — Na $\xrightarrow{R_2$ — CI R_1 — C \equiv C — R_2

Ацетилен – из карбидов

$$CaC_2 + 2H_2O \rightarrow C_2H_2\uparrow + Ca(OH)_2\downarrow$$

Диены

Соединения с общей формулой C_nH_{2n-2} , содержащие две двойных углеродуглеродных связи. Бывают кумулированные, сопряжённые и изолированные.

Доказательство сопряжения – по теплоте гидрирования

Методы синтеза диенов

Бутадиен-1,3 и изопрен в промышленности получают крекингом соответствующих фракций нефти (бутан-бутеновой и пентан-пентеновой) на катализаторах $\mathrm{Cr_2O_3/Al_2O_3}$.

HC
$$=$$
 CH $=$ C

Планарные конформации бутадиена

Более устойчивой является Sтранс-конформация

Химические свойства

$$H_2C$$
— CH — CH — CH_2 1,2
 H_2C — CH — CH — CH_2 1,2
 H_2C — CH — CH — CH_2 1,4
 H_2C — H_2C — H_2C — H_2 1,4

Соотношение продуктов реакции электрофильного присоединения (1,2 и 1,4) зависит от **температуры**

Температура, ° С	Продукт 1,2-присоединения, %	Продукт 1,4-присоединения, %
-80	80	20
–15	54	46
+40	20	80
+60	10	90

Реакция электрофильного присоединения к диенам обратимая

Реакция Дильса-Альдера

В этой реакции принимают участие 4π -электронная система диена и 2π -электронная система диенофила. Реакция представляет собой т.н. 4+2 циклоприсоединение

Наиболее реакционноспособные диенофилы — CH_2 =CH–X, где X — электроноакцепторная группа (NO_2 , CN, COOH etc.).

В реакции могут принимать участие как ациклические, так и циклические диены, у которых сопряжённые связи закреплены в S-*цис*-конформации.

Не вступают в реакции Дильса-Альдера