
NET.C#.02
The C# language.
Fundamentals.

Your First C# Program

Our first C# program is a real classic. It does nothing
more than print a welcome message to the screen.
Yet, t

This program sends the simple greeting to the console

// Example1_1.cs
// This program sends a simple greeting to the console
//
using System;
namespace csbook.ch1
{

class Example1_1
{

static void Main(String [] args)
{
Console.WriteLine("Welcome to C# Programming.");
}

}
}

Comments

using the System namespace

Creating namespace

The Main method

Class definition

When you execute that program and if all goes well you should
have a new file in your directory named Example1_1.exe. If you run
that file you should see your welcome message print to the screen.

A Closer Look to the strucure of C# program
In C#, as in other C-style languages, every statement must end in a semicolon
(;)

Statements can be joined into blocks using curly braces { }.

Single-line comments begin with two forward slash characters (//), and
multi-line comments begin with a slash and an asterisk (/*) and end with the
same combination reversed (*/).

The first couple of lines have to do with namespaces, which are a way to group
together associated classes.

The using statement specifies a namespace that the compiler should look at to
find any classes that are referenced in your code but which aren’t defined in
the current namespace.

All C# code must be contained within a class. The class declaration consists of
the class keyword, followed by the class name and a pair of curly braces. All
code associated with the class should be placed between these braces.

Every C# executable (such as console applications, Windows applications, and
Windows services) must have an entry point — the Main() method

Variables in C#

We declare variables in C# using
the following syntax:

DataType variableName;
// or
DataType variableName1, variableName2;
//for exampleint

The compiler won’t actually let us use this variable until we have initialized it
with a value, but the declaration allocates 4 bytes on the stack to hold the
value.

variableName = value;

If we declare and initialize
more than one variable in a
single statement, all of the
variables will be of the same
data type

int x=10, y=20;
//x and y are both ints

Don’t assign different data
types within a multiple variable
declaration

int x=10, bool y=true;
//This won’t compile

Initialization of Variables

Can’t do this ! Need to initialize d
befor use

public static void Main()
{ int d;
 Console.WriteLine(d);
}

Would only create a reference for a Something object.
But this reference does not yet actually refer to any
object

Something objSomthing

Instantiating a reference object in C#
requires use of the new keyword

objSomething = new So

Error message: Use of unassigned local variable ‘d’ CTE

Variable scope

if (length > 10)
{
 int area = length * length;
}

Block scope

void ShowName()
{
 string name = "Bob";
}

Procedure scope

private string message;
void SetString()
{
 message = "Hello World!";
}

Class scope

public class CreateMessage
{
 public string message
 = "Hello";
}

public class DisplayMessage
{
 public void ShowMessage()
 {
 CreateMessage newMessage
 = new CreateMessage();
 MessageBox.Show
 (newMessage.message);

 }
}

Namespace scope

Scope clashes for local variables

int x=20;
//some code
int x=30;

We can’t do this:

public static i
n
t Main(){ int j = 20;

We can’t do this:

public static int Main(){
f
or (int i = 0; i < 10; i
++) { Conso
l
e
.WriteLine(i); } // i goes

out of scope here// We can d
ecla
re a variable named i //again, b
ecause// there’s no other varia
ble with that //name i
n scope for (int i = 9; i >=

0; i
-

We can do this:

Scope clashes for fields and local variables

class ScopeTest2
{
 static int j = 20; public st
a

We can do this:

What number will be displayed ?

class ScopeTest2
{
 static int j = 20; public st
a

We can do this:

What number will be displayed ?

First case: the variable j in the Main() hides the class-level variable with the same name

Second case: We use the name of the class for static field j

Constants

const int a = 10
0
; // This value cannot be chang
e

They must be initialized when they are declared, and once a value has been
assigned, it can never be overwritten.

A constant is a variable whose value cannot be changed throughout its lifetime

Constants have the following characteristics:

We can’t initialize a constant with a value taken from a variable. If you need to
do this, you will need to use a readonly field

Constants are always static. However, notice that we don’t have to include the
static modifier in the constant declaration

Statements

Programs consist of sequences of C# statements

Conditional statements

Loops

Statements allow us to control the flow of our program rather than executing
every line of code in the order it appears in the program

The switch statement

Jump statements

Conditional statements

The if statement

One - way ifif ([condition]) [code to execute]

if ([condition])
{
 [code to execute if condition is true]
}

if ([condition])
{
 [code to execute if condition is true]
}
else
{
 [code to execute if condition is false]
}

The conditional operator

Type result = [condition] ? [true expression] : [false expression]

Either – or if

The switch statement

switch ([expression to check])
{
 case [test1]:
 ...
 [exit case statement]
 case [test2]:
 ...
 [exit case statement]
 default:
 ...
 [exit case statement]
}

Syntax
swith(a)
{
 case 0:
 // Executed if a is 0.
 break;
 case 1:
 case 2:
 case 3:
 // Executed if a is 1, 2, or 3.
 break;
 default:
 // Executed if a is any
 // other value.
 break;
}

Example

Loops

C# provides four different loops

The for loop

The do … while loop

Loops allow us to execute a block of code repeatedly until a certain condition is
met.

The while loop

The foreach loop

The for loop

for ([counter variable] = [starting value]; [limit]; [counter modification])
{ [Code to loop] }

Syntax

for (int i = 0; i < 10; i++)
{
 // Code to loop, which can use i.
}
. . .
for (int i = 0; i < 10; i = +2)
{
 // Code to loop, which can use i.
}
. . .
int j;
for (j = 0; j < 10; j++)
{
 // Code to loop, which can use j.
}
// j is also available here

Example

Nested loops

Example
static void Main(string[] args)
{
 // This loop iterates through rows...
 for (int i = 0; i < 100; i+=10)
 {
 // This loop iterates through columns...
 for (int j = i; j < i + 10; j++)
 {
 Console.Write(“ “ + j);
 }
 Console.WriteLine();
 }
}

The while loop

while ([condition])
{
 [Code to loop]
}

Syntax

double balance = 100D;
double rate = 2.5D;
double targetBalance = 1000D;
int years = 0;
while (balance <= targetBalance)
{
 balance *= (rate / 100) + 1;
 years += 1;
}

Example

Like the for loop, while is a pre-test loop. The syntax is similar, but while loops
take only one expression

• Unlike the for loop, the while loop is most often used to repeat a statement or
a block of statements for a number of times that is not known before the loop
begins.

The do … while loop
The do...while loop is the post-test version of the while loop

This means that the loop’s test condition is evaluated after the
body of the loop has been executed. This loop will at least
execute once, even if Condition is false.

do
{
 [Code to loop]
} while ([condition]);

Syntax

string userInput = "";
do
{
 userInput = GetUserInput();
 if (userInput.Length < 5)
 {
 // You must enter at least 5 characters.
 }
} while (userInput.Length < 5);

Example

The foreach loop
The foreach loop allows us to iterate through each item in a

collection. The Collection is an object that contains other objects.

We can’t change the value of the item in the collection, so code
such as the following will not compile:

fo
r
each (type [item
] in [collection]{

Syntax

foreach (int temp in arrayOfInts) { Console.WriteLine(temp);}

Example for C# arrays

foreach (int temp in arrayOfInts) { temp++; Console.WriteLine(temp);}

CTE

Jump statements
C# provides the number of statements that allow us to jump to another line in

the program

Br
e
ak can be used to
exit from for, foreach

The break statement

The continue is similar to break, but it exist only from one
iteration of the loop.

The continue statementThe return statement i
s
u
sed to exit a method of a class
, returning control to the ca
ller
of the method. If the method has a return type,
retur
n must return a value of this t

The return statement

Classes and Structs
Classes and structs are templates form wich we can create objects. Each object

contain data and has methods to manipulate and access data.

Simple Class

Classes are reference type stored in the heap.

Struct are value type stored on the stack.

class PhoneCustomer
{
public const string
DayOfSendingBill = “Monday”;
public int CustomerID;
public string FirstName;
public string LastName;
}

struct PhoneCustomer
{
public const string
DayOfSendingBill = “Monday”;
public int CustomerID;
public string FirstName;
public string LastName;
}

Simple Struct

PhoneCustomer myCustomer = new PhoneCustomer();// works for a class

 PhoneCustomer myCustomer = new PhoneCustomer(); // works for a struct

Classes Members
Data members are those members that contain the data for the class – fields,

constants, and events.

Data members can be static (associated with the class as a whole).

Data members can be instance (each instance of the class has its own copy of the
data).

Classes Members
Fields are any variables associated with the class. We can access these fields

using the Object.FieldName syntax

Events are class members that allow an object to notify a caller whenever
something happens, such as a field property changing or something else.

The client can have a code known as an event handler that reacts to the event.

PhoneCustomer Customer1 = new PhoneCustomer();
Customer1.FirstName = “Simon”;

Constants can be associated with classes in the same way as variable. If it is
declared as a public, it will be accessible from outside the class.

public const string DayOfSendingBill = “Monday”;

Function Members
Function members are those members that provide some functionality for

manipulating the data in the class. They include:

Methods are functions that are associated with a particular class. They can be
instance or static methods (like the Console.WriteLine() method).

Methods

Properties

Constructors

Finalizers

Operators

Indexers

Declaring methods
The definition of the method consists: method modifiers, the type of return

value, the name of the method, a list of arguments, the body of the method

[modifiers] return_type MethodName([parameters])
{
// Method body
}

 A method can contain as many return statements as required:

public bool IsSquare(Rectangle rect)
{
 return (rect.Height == rect.Width);
}

public bool IsPositive(int value)
{
 if (value < 0) return false;
 return true;
}

Passing parameters to methods

class ParameterTest{ s
ta
t
ic void SomeFunction(int[] ints
, int i) { ints[0] = 100
; i
= 100; }public static int Main(){ int i = 0;
int[]
 ints = { 0, 1, 2, 4, 8 }; //

By reference By value

Ref parameters

// define method stati
c
v
oid SomeFunction(int[] ints, re
f int i) { ints[0] = 10
0; i
 = 100; } // We will also need to add the ref
 when
 we invoke the method

Passing variables by value is the default. We can, however, force value
parameters to be passed by reference. To do so, we use the ref keyword. If a
parameter is passed to a method, and if the input argument for that method
is prefixed with the ref keyword, then any changes that the method makes
to the variable will affect the value of the original object

 Any variable must be initialized befor it is passed into a method, whether it is
passed in by value or reference

Out parameters

// define method stati
c
v
oid SomeFunction(out int i) {
 i = 100; }public stati
c voi
d Main() { int i; // i is declared but not
 init
ialized SomeFunction(out i)

C# requires that variables be initialized with a starting value before they are
referenced. But if the method arguments is prefixed with out, that method
can be passed a variable that has not been initialized. The variable is passed
by reference

Properties

The idea of a property is that it is a method or pair of methods that are
dressed to look like a field

Suppose you have the following code:

// mainForm is of type of System.Windows.Forms
 mainForm.Height = 400;

On executing this code, the height of the window will be set to 400 and you
will see the window resize. The code looks like we are setting a field, but in
fact we are calling a property accessor that contain code to resize the form.

To define a property…
We use the following syntax:

public string SomeProperty
{

get
 {

return “This is the property value”;
 }
 set
 {
 // do whatever needs to be done to set the property
 }
}

The get accessor takes no parameters and must return the same type as the
declared property.

Get accessor

Set accessor

To define a property…

private string foreNam
e;
p
ublic string ForeName{ get { r
eturn foreName; } set {
 if
(value.Length > 20) // code here to take
error
 recovery action // (eg.

Class field

Property

Example:

set works

get works

Thanks for your
attention

