
NET.C#.04
Design Patterns.

Christopher Alexander says,
"Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way
twice"

In software engineering,
a design pattern is a general reusable solution to a commonly
occurring problem. A design pattern is not a finished design that
can be transformed directly into code. It is a description or
template for how to solve a problem that can be used in many
different situations.
Object-oriented design patterns show relationships and
interactions between classes or objects, without specifying the
final application classes or objects that are involved.

What is a Design Pattern ?

Must have… and must read…

Desing patterns classification

 Creational patterns

1

 Behavioral patterns

3

 Structural patterns

2

Creational patterns concern the process of object creation.

Structural patterns deal with the composition of classes or
objects.

Behavioral patterns characterize the ways in which classes or
objects interact and distribute responsobility

Abstract Factory
Creational pattern
Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Participants
The classes and/or objects participating in this pattern are:

• Abstract Factory
• Concrete Factory
• Abstract Product
• Product
• Client

AbstractFactory - declares an interface for operations that create
abstract products

Abstract Factory: participants

ConcreteFactory - implements the operations to create concrete
product objects

AbstractProduct - declares an interface for a type of product
object

Product - defines a product object to be created by the
corresponding concrete factory implements the AbstractProduct
interface

Client uses interfaces declared by AbstractFactory and
AbstractProduct classes

Abstract Factory: UML class diagram

CarFactory. Step 1

Car Factory. Step 2

Car Factory. Step 3

Car Factory. Step 4

Abstract Factory: example.
Abstract Factory - CarFactory

 abstract class CarFactory
 {
 public abstract AbstractCar CreateCar();
 public abstract AbstractEngine CreateEngine();
 }

Concrete Factory - BMWFactory

class BMWFactory : CarFactory
 {
 public override AbstractCar CreateCar()
 {
 return new BMWCar();
 }
public override AbstractEngine CreateEngine()
 {
 return new BMWEngine();
 }
 }

Abstract Factory->Concrete Factory

 class AudiFactory : CarFactory
 {
 public override AbstractCar CreateCar()
 {
 return new AudiCar();
 }
public override AbstractEngine CreateEngine()
 {
 return new AudiEngine();
 }
 }

Abstract Factory->Concrete Factory
Concrete Factory - AudiFactory

 abstract class AbstractCar
 {
 public abstract void MaxSpeed(AbstractEngine engine);
 }

Abstract Factory->Abstract Product

 abstract class AbstractEngine
 {
 public int max_speed;
 }

Abstract Product - AbsrtactCar

Abstract Product - AbsrtactEngine

Class implementation - BMWCar
 class BMWCar : AbstractCar
 {
 public override void MaxSpeed(AbstractEngine engine)
 {
 Console.WriteLine(«Max speed:« +
engine.max_speed.ToString());
 }
 }

Abstract Product->Concrete Product

Class implementation - BMWEngine

 class BMWEngine : AbstractEngine
 {
 public BMWEngine()
 {
 max_speed = 200;
 }
 }

 class AudiCar : AbstractCar
 {
 public override void MaxSpeed(AbstractEngine engine)
 {
 Console.WriteLine(«Макcимальная скорость: « +
engine.max_speed.ToString());
 }
 }
//Concrete Engine
class AudiEngine : AbstractEngine
 {
 public AudiEngine()
 {
 max_speed = 180;
 }
 }

Abstract Product->Concrete Product
Class implementation - AudiCar

 class Client
 {
 private AbstractCar abstractCar;
 private AbstractEngine abstractEngine;
 public Client(CarFactory car_factory)
 {
 abstractCar = car_factory.CreateCar();
 abstractEngine = car_factory.CreateEngine ();
 }
 public void Run()
 {
 abstractCar.MaxSpeed(abstractEngine);
 }
 }

Abstract Factory. Пример
Class implementation – Client, works with
abstract factory

 public static void Main()
 {
 // Abstract Factory № 1
 CarFactory bmw_car = new BMWFactory ();
 Client c1 = new Client(bmw_car);
 c1.Run();
 // Abstract Factory № 2
 CarFactory audi_factory = new AudiFactory();
 Client c2 = new Client(audi_factory);
 c2.Run();
 Console.Read();
 }

Abstract Factory.

Builder Pattern
Creational pattern
Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.

Participants
The classes and/or objects participating in this pattern are:

• Builder
• Concrete Builder
• Director
• Product

Builder - specifies an abstract interface for creating parts of a
Product object

Builder: participants

ConcreteBuilder -
• constructs and assembles parts of the product by implementing

the Builder interface
• defines and keeps track of the representation it creates
• provides an interface for retrieving the product

Director - constructs an object using the Builder interface

Product
• represents the complex object under construction

ConcreteBuilder builds the product's internal representation and
defines the process by which it's assembled

• includes classes that define the constituent parts, including
interfaces for assembling the parts into the final result

Builder: UML class diagram

Builder

Builder. UML

Builder: Example
HappyMeal, BigHappyMeal

 class HappyMeal
 {
 // contains information about parts of HappyMeal
 ArrayList parts = new ArrayList();
 // adds a new part
 public void Add(string part)
 {
 parts.Add(part);
 }
 // Shows information about HappyMeal
 public void Show()
 {
 Console.WriteLine(" Happy Meal Parts ——-");
 foreach (string part in parts)
 Console.WriteLine (part);
 }
 }

Builder. Example
Declare a builder - an abstract interface for creating
an object in parts

 abstract class HappyMealBuilder
 {
 public abstract void BuildBurger();
 public abstract void BuildPepsi();
 public abstract void BuildFries();
 public abstract void BuildToy();
 public abstract HappyMeal GetProduct();
 }

Builder Declare a concrete builder
BigHappyMeal

{ class BigHappyMealBuilder : HappyMealBuilder
 {
 private HappyMeal happy_meal = new HappyMeal();
 public override void BuildBurger()
 { happy_meal.Add("BigMac"); }
 public override void BuildPepsi()
 { happy_meal.Add("Pepsi 0.7"); }
 public override void BuildFries()
 { happy_meal.Add("BigFries"); }
 public override void BuildToy()
 { happy_meal.Add("Two toys"); }
 public override HappyMeal GetProduct()
 {
 return happy_meal;
 }
 }

Builder Declare a concrete builder
HappyMeal

 class SmallHappyMealBuilder : HappyMealBuilder
 {
 private HappyMeal happy_meal = new HappyMeal();
 public override void BuildBurger()
 { happy_meal.Add("Hamburger"); }
 public override void BuildPepsi()
 { happy_meal.Add("Pepsi 0.3"); }
 public override void BuildFries()
 { happy_meal.Add("SmallFries"); }
 public override void BuildToy()
 { happy_meal.Add("One toy"); }
 public override HappyMeal GetProduct()
 {
 return happy_meal;
 }
 }

Builder Class Director – will construcr the
object

 class Director
 {
 // Constructing the object in parts
 public void Construct(HappyMealBuilder builder)
 {
 builder.BuildBurger(); //Call Build-methods
 builder.BuildPepsi();
 builder.BuildFries();
 builder.BuildToy();
 }
 }

Builder

public static void Main()
 {
 // Create a Director and builders
 Director director = new Director();
 HappyMealBuilder big_hmbuilder = new BigHappyMealBuilder();
 HappyMealBuilder small_hmbuilder = new SmallHappyMealBuilder();
 // Construct two products
 director.Construct(big_hmbuilder);
 HappyMeal hm1 = big_hmbuilder.GetProduct();
 hm1.Show();
 director.Construct(small_hmbuilder);
 HappyMeal hm2 = small_hmbuilder.GetProduct();
 hm2.Show();
 }

