NET.C#.04
Design Patterns.

What is a Design Pattern 7\

Christopher Alexander says,

"Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way

Qwice" /
m software engineering, \

a design pattern is a general reusable solution to a commonly
occurring problem. A design pattern is not a finished design that
can be transformed directly into code. It is a description or
template for how to solve a problem that can be used in many
different situations.

Object-oriented design patterns show relationships and
interactions between classes or objects, without specifying the
final application classes or objects that are involved.

Must have... and must read...

?

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

s IS AN TSI I B

.—-\-—«-pd -—h** ’ . R :
p : . o :
-hq-h .-"!-‘.‘L‘- 5 . A
M*N-‘-.‘. ;
Qo——A” ~ l«‘ool‘q
> ,
JC‘J-."-‘-‘.

do*q LR R)

>
O
>,
D
@)
£
=
m
v
=
m
<
B
~
®)
)
m
W
L4
©)
Z
>
=
()
@)
<
o
=
=
Z
(@)
w
m
~
=
w

Foreword by Gndy Booch

B L R b et
»

Desing patterns classification

[Creational patterns }
[Structural patterns }
[Behavioral patterns }

concern the process of object creation.
deal with the composition of classes or

objects.

characterize the ways in which classes or
objects interact and distribute responsobility

Abstract Factory

4 .)
Creational pattern
Provide an interface for creating families of related or
Kdependent objects without specifying their concrete classes. -

Participants
The classes and/or objects participating in this pattern are:
e Abstract Factory
e Concrete Factory
e Abstract Product
¢ Product
¢ Client

<

Abstract Factory: participants

s
AbstractFactory - declares an interface for operations that create
\abstract products

J

p
ConcreteFactory - implements the operations to create concrete
\product objects

[AbstractProduct - declares an interface for a type of product
object

corresponding concrete factory implements the AbstractProduct
interface

Client uses interfaces declared by AbstractFactory and

J
Product - defines a product object to be created by the }
AbstractProduct classes }

Abstract Factorv: UML class diagram

Client AbstractFactory

+CreateProductA()
+CreateProductB()

P4 I\
AbstractProductA
ConcreteFactory1 ConcreteFactory2
% ZF‘ +CreateProductA() +CreateProductA()
+CreateProductB{() +CreateProductB{()
ProductA1 ProductA2 I T I |
s o W s e s W s S i | |
<_ | | |
| | |
N | | |
I et e it e et s i s i J | |
| |
| |
AbstractProductB | |
| |
| |
| |
| |
x5 . .
| |
ProductB1 ProductB2 | |
é ______ 1S e, e oume. .- e, . e, e, i |
|
|
1T |

CarFactory. Step 1
/ Abstract Factory Pattern - Example

Abstract factory

Abstract Product
creates ———

4

gar Factory. Step 2

Abstract Factory Pattern — Example

Abstract factory

]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
L

Car Factory. Step 3

Abstract Factory Pattern — Example

Abstract factory

<<creates>>

<<creates>>

- ————

<<creates>>

Car Factory. Step 4

Abstract Factory Pattern — Example

Provides for creation
of

<<cCreates>>

<<creates>>

<<creates>>

<<Ccreates>>

<<creates>>

Abstract Factory: example.

[Abstract Factory - CarFactory

abstract class CarFactory

{
public abstract AbstractCar CreateCar();

public abstract AbstractEngine CreateEngine();
}

Abstract Factory->Concrete Factory

Concrete Factory - BMWFactory

class BMWFactory : CarFactory
{

public override AbstractCar CreateCar()

{

return new BMWCar();

}

public override AbstractEngine CreateEngine()

{

return new BMWEngine();

}

}

Abstract Factory->Concrete Factory

—(Concrete Factory - AudiFactory

class AudiFactory : CarFactory

{
public override AbstractCar CreateCar()
{
return new AudiCar();
}

public override AbstractEngine CreateEngine()

{

return new AudiEngine();
}

Abstract Factory->Abstract Product

{Abstract Product - AbsrtactCar

abstract class AbstractCar

{

public abstract void MaxSpeed(AbstractEngine engine);

}

{Abstract Product - AbsrtactEngine

abstract class AbstractEngine

{

public int max_speed;

}

Abstract Pro

Class implementation - BMWCar

class BMWCar : ABstractCar
{

public override void MaxSpeed(AbstractEngine engine)

{

Console.WritelLine(«Max speed:« +
engine.max_speed.ToString());

}

}

— -{Class implementation - BMWEngine

class BMWEngine : AbstractEngine

{
public BMWEngine()
{
max_speed = 200;
}

}

Abstract Product->Concrete Product

—{Class implementation - AudiCar

class AudiCar : AbstractCar

{

public override void MaxSpeed(AbstractEngine engine)

{

Console.WriteLine(«MakcuMmanbHasi CKOpPOCTb: « +
engine.max_speed.ToString());

}
}

//Concrete Engine
class AudiEngine : AbstractEngine

{
public AudiEngine()
{

max_speed = 180;
}

}

Abstract Factory. [lpumep

Class implementation — Client, works with
class Client abstract factory

{

private AbstractCar abstractCar;

private AbstractEngine abstractEngine;

public Client(CarFactory car_factory)

{
abstractCar = car_factory.CreateCar();
abstractEngine = car_factory.CreateEngine ();

}
public void Run()

{
}

abstractCar.MaxSpeed(abstractEngine);

}

Abstract Factory.

public static void Main()
{
// Abstract Factory Ne 1
CarFactory bmw_car = new BMWFactory ();
Client cl1 = new Client(bmw_car);
cl.Run();
// Abstract Factory Ne 2
CarFactory audi_factory = new AudiFactory();
Client c2 = new Client(audi_factory);
c2.Run();
Console.Read();

}

Builder Pattern

/Creational pattern A
Separate the construction of a complex object from its
representation so that the same construction process can

. create different representations. Y,

4 N\

Participants
The classes and/or objects partlapatlng |n thls pattern are:
e Builder
e Concrete Builder
¢ Director
¢ Product

<

Builder: participants
s

Builder - specifies an abstract interface for creating parts of a
\Product object

J
/ ConcreteBuilder - I
e constructs and assembles parts of the product by implementing
the Builder interface
e defines and keeps track of the representation it creates

‘e provides an interface for retrieving the product -
[Director - constructs an object using the Builder interface J

/Product \

e represents the complex object under construction
ConcreteBuilder builds the product's internal representation and
defines the process by which it's assembled

e includes classes that define the constituent parts, including

interfaces for assembling the parts into the final result

N

Builder: UML class diagram

Director builder

Builder

>

+Construct()

}
I
I
|

foraach fem in siruciure

buildar.BulldParl()

>

+BuildPart()

7a

ConcreteBuilder

- -5

Product

+BuildPart()
+GetResult()

Builder

not argue
not argue
W not argue
not argue
not™ arque
3\ not argue
W not argue
not argue
not™ argue
not argue
not™ argue

French
Translator

Convertthis to French

wirh dicts on YouTube.
with diots on YouTube.
with diots on YouTube.
with Jdiots on YouTube.
with diofs on YouTuke.
with dicts on You V
with diots on 5,

with dicts on (RN

wih ldllofi on Jo

with diots ogeYr
wih diots SN

Use

Reader
(Director)

Translator -

(Builder)

Builders

French
Translator

German
Translator

Sanskrit
Translator

Builder. UML

Mpepocrasnser uirepdenc
Director Builder ANA Co3aaHNA yacTen obbexTa
>
JaY
KoHcTpywpyeT 06bLeKT no yacTaMm
ConcreteBuilder
KoHxpeTHe it mre%cbei«: v _)I Bradiict
C NOMOLLLIO KOTOPOro :
MOXHO coanaeaorg + BuildPart() :
KOHKDETHbIE 00LEKTLI, + GetResult() WTorose oGbexT

HacneHMKK TUna
Product

Builder: Exampl
HappyMeal, BigHappyMeal

class HappyMeal

{

// contains information about parts of HappyMeal
ArraylList parts = new ArraylList();

// adds a new part

public void Add(string part)

{
parts.Add(part);

}

// Shows information about HappyMeal

public void Show()

{
Console.WriteLine(" Happy Meal Parts —-");
foreach (string part in parts)
Console.WritelLine (part);

}

Builder. Exampl

Declare a builder - an abstract interface for creating
an object in parts

abstract class HappyMealBuilder
{

public abstract void BuildBurger();
public abstract void BuildPepsi();
public abstract void BuildFries();
public abstract void BuildToy();

public abstract HappyMeal GetProduct();

Builder

Declare a concrete builder
BigHappyMeal

{ class BigHappyMealBuilder : HappyMealBuilder
{

private HappyMeal happy meal = new HappyMeal();
public override void BuildBurger()
{ happy_meal.Add("BigMac"); }
public override void BuildPepsi()
{ happy_meal.Add("Pepsi 0.7"); }
public override void BuildFries()
{ happy_meal.Add("BigFries"); }
public override void BuildToy()

{ happy_meal.Add("Two toys"); }
public override HappyMeal GetProduct()
{

return happy_meal;

}
}

Builder

Declare a concrete builder
HappyMeal

class SmallHappyMealBuilder : HappyMealBuilde
{
private HappyMeal happy meal = new HappyMeal();
public override void BuildBurger()
{ happy_meal.Add("Hamburger"); }
public override void BuildPepsi()
{ happy_meal.Add("Pepsi 0.3"); }
public override void BuildFries()
{ happy_meal.Add("SmallFries"); }
public override void BuildToy()
{ happy_meal.Add("One toy"); }
public override HappyMeal GetProduct()
{
return happy meal;
}
}

Builder

{

{

}
}

builder
builder
builder
builder

Class Director — will construcr the
object

class Director

// Constructing the object in parts
public void Construct(HappyMealBuilder builder)

.BuildBurger(); //Call Build-methods
.BuildPepsi();

.BuildFries();

.BuildToy();

Builder

public static void Main()
{
// Create a Director and builders
Director director = new Director();
HappyMealBuilder big hmbuilder = new BigHappyMealBuilder();
HappyMealBuilder small hmbuilder = new SmallHappyMealBuilder();
// Construct two products
director.Construct(big hmbuilder);
HappyMeal hml = big hmbuilder.GetProduct();
hml.Show();
director.Construct(small _hmbuilder);
HappyMeal hm2 = small hmbuilder.GetProduct();
hm2.Show();

