NET.C#.07 Strings and
Regular Expressions

What can we use ?

There are two types of string: String and StringBuilder

If you're performing repeated modifications on a string
befor displaying it or passing it to some method, the String class can be very
inefficient. For this kind of situation, another class, System.Text.StringBuilder is
more suitable, since it has been designed exactly for this situation.

— using a couple of useful interfaces, IFormatProvider and
IFormattable, and by implementing these interfaces on our own classes, we can
actually define our own formatting sequences, so we can display the values of our
classes in whatever way we specify.

— .NET offers some classes that deal with the situation in which
you need to identify or extract substrings that satisfy certain fairly sophisticated criteri.
We can use some classes from System.Text.RegularExpressions, which are designed
specifically to perform this kind of processing.

System.String

4)

System.String is a class that is specifically designed to store a string, and allow a large

number of operations on the string.

o %
~

4 !
Each string object is an immutable sequence of Unicode characters.
IT means that methods that appear to change the string actually return a modified copy;

\the original string remains intact in memory until it is garbage-collected.)

1. string greetingText = “Hello from all the guys at GrSU “;

2. greetingText += “We do hope you enjoy this lesson *;

1. An object of type 2. We create a new string instance, with just
System.String is created and enough memory allocated to store the
initialized to hold the text. The combined text (55 chars). The old String object

.NET runtime allocates just is now unreferensed.
enough memory to hold this
text (32 chars)

Declaration of string

// Simple declaration
string MyString = "Hello

World";// Strings can include esca
pe characte
r

s, such as \n or \t, which //

begin with a backslash charact
er (\)strin

-

Manipulating Strings

Method or field
— The string ciass provides a host of
Chars The string indexer me thods for comparing, searching,
Compare() Overloaded public static métklos aQuISEIPE] SITREG] o€ “most
: : - importdnt of whic
CpmpareTo() Compares this string with a
Concat() creates a new string from o o
Copy() Creates a new string by copying another
Join() Concatenates string of a string array
Split() Returns a substrings delimited by a characters in a string array
ToUpper() Returns a copy of the string in uppercase
Length The number of characters in the string
Substring() Retrivies a substring

Manipulating Strings

int result;//c
o)

mpare two strings, case sen
sitiv
eresult = s
tring
C
ompare(sl, s2);// compar
e

two strings, ignore caseres
ult =

string.Compare(sl, s2, true);// insert the word "e
xcellent"st

ring
s10 = s
3

\

Splitting Strings

// create some

strings to work withstring sl1 = "On
e, Two

,Three Libe

rty A

S

S

ociates, Inc.";// consta

n

ts for the space and comma character
scons

t char Space =
array of de
limiters to split the sentence withchar[] delimiter

s = new char[] { Space
, Com

ma };//

\

';const char Comma = ',"';//

The result is array of strings

stri

ng object is an immutable

string returnNumber = "";

for

re’?/

(int i = 0; i < 1000; i++)

| re’
re
re
re
re
re
re

-{\StringBuiIder.

re

The problem is that the string type is not
designed for this kind of operation. What
you want is to create a new string by
appending a formatted string each time
through the loop. The class you need is

Do you know when we do like that we are assigning it again and again?

Dynamic Strings (class StringBuilder)

/

The System.Text.StringBuilder class is used for creating and modifying strings.
o

/

Unlike String, StringBuilder is mutable.
o

p
The processing you can do on a StringBuilder is limited to substitutions and appending or

\removing text from strings. However, it works in a much more efficient way.

p
When you construct a string, just enough memory gets allocated to hold the string. The

\StringBuiIder, however, normally allocates more memory than needed

StringBuilder

StringBuilder greetingBuilder = new StringBuilder(“Hello from all

the guys at Wrox Press. “, 150);

Hello from all the guys at Wrox Press. <uninitialized>

< 39 characters > 111 characters >

greetingBuilder.Append(“We do hope you enjoy this book as much as
we enjoyed writing it”);

Then, on calling the Appcd() method, the remaining text is placed in the empty
space, without the need for more memory allocation.

Normally, we have to use to perform any manipulation of strings,
and to store or display the final result.

StringBuilder members

The StringBuilder class has two main properties:
Length - indicates the length of the string that it actually contains;
Capacity - indicates the maximum length of the string in the memory allocation.

Str

ingBuilder sb = new StringBuilder(“Hello”); //Len
gth = 5StringBuilder sb = new StringBuilder(20
); //Capacity = 20//we can set Capa

StringBuilder members

[The following table lists the main StringBuilder methods.

Method Purpose

Append() Appends the string to the current string

AppendFormat() Appends the string that has been worked out from a format
specifier

Insert() Inserts a substring into the current string

Remove() Remove characters from the current string

Replace() Replace all occurrences of a character by another character or a

substring with another substring in the current string

ToString() Returns the current string cast to System.String object (overriden
from System.Obiject)

Regular Expressions

Regular expressions are that can be used to match strings.
Regular expressions are a powerful for describing and manipulating

text.
Regular expression is applied to a string—that is, to a set of characters. Often,

that string is an

With regular expressions, you can perform high-level operations on strings. For
example, you can:

" Identify all repeated words in a string (for example, “The
. computer books books” to “The computer books”)

4)
Convert all words to title case (for example, “this is a Title” to “This Is

_ATitle”)

 Separate the various elements of a URI (for example, given
http://www.wrox.com, extract the protocol, computer name, file

._hame, and so on) Y

J
~N

Regular Expressions

Task: write a C# console application that takes some text as an input, and determines if
the text is an email address.

using System.Text;using
S
ystem.T
ext.RegularExpressions;string text = Consol
/“As you can see, a regular expression consists of two types of characters: literals and N\
metacharacters.

A literal is a character you wish to match in the target string.
A metacharacter is a special symbol that acts as a command to the regular expression
parser. The parser is the engine responsible for understanding the regular expression.

- /

//matches any three char

where t

he first character is 'd€ or 'a' Text: a
bc de

f ant cow R

egex:

- S

// matches the character

'a' fol

lowed by zero or more word// characters. Te
xt:

Anna Jones

and

I L

Metacharacters and their Description

Examples

using System;using Sy

S

tem.Text.RegularE

Xpressions;// First we
see the input string.
string input = "/con

= e

Thanks
for Your Attention

