
NET.C#.07 Strings and
Regular Expressions

What can we use ?

2. Formatting expressions — using a couple of useful interfaces, IFormatProvider and
IFormattable, and by implementing these interfaces on our own classes, we can
actually define our own formatting sequences, so we can display the values of our
classes in whatever way we specify.

There are two types of string: String and StringBuilder

1. Building strings — If you’re performing repeated modifications on a string
befor displaying it or passing it to some method, the String class can be very
inefficient. For this kind of situation, another class, System.Text.StringBuilder is
more suitable, since it has been designed exactly for this situation.

3. Regular expressions — .NET offers some classes that deal with the situation in which
you need to identify or extract substrings that satisfy certain fairly sophisticated criteri.
We can use some classes from System.Text.RegularExpressions, which are designed
specifically to perform this kind of processing.

System.String

System.String is a class that is specifically designed to store a string, and allow a large
number of operations on the string.

Each string object is an immutable sequence of Unicode characters.
IT means that methods that appear to change the string actually return a modified copy;
the original string remains intact in memory until it is garbage-collected.

1. string greetingText = “Hello from all the guys at GrSU “;

2. greetingText += “We do hope you enjoy this lesson ”;

1. An object of type
System.String is created and
initialized to hold the text. The
.NET runtime allocates just
enough memory to hold this
text (32 chars)

2. We create a new string instance, with just
enough memory allocated to store the
combined text (55 chars). The old String object
is now unreferensed.

Declaration of string

// Simple declaration
string MyString = "Hello

World";// Strings can include esca
pe characte
r

s, such as \n or \t, which //

begin with a backslash charact
er (\)strin
g

Manipulating Strings

The string class provides a host of
methods for comparing, searching,
and manipulating strings, the most
important of whic

Method or field Purpose

Chars The string indexer

Compare() Overloaded public static method that compares two strings

CpmpareTo() Compares this string with another

Concat() creates a new string from one or more strings

Copy() Creates a new string by copying another

Join() Concatenates string of a string array

Split() Returns a substrings delimited by a characters in a string array

ToUpper() Returns a copy of the string in uppercase

Length The number of characters in the string

Substring() Retrivies a substring

Manipulating Strings
int result;//c
o

mpare two strings, case sen
sitiv
eresult = s
tring
.
C
ompare(s1, s2);// compar
e

 two strings, ignore caseres
ult =
 string.Compare(s1, s2, true);// insert the word "e
xcellent"st
ring
s10 = s
3

Splitting Strings
// create some

strings to work withstring s1 = "On
e,Two
,Three Libe
rty A
s
s
ociates, Inc.";// consta
n
ts for the space and comma character
scons
t char Space = ' ';const char Comma = ',';//
array of de
limiters to split the sentence withchar[] delimiter

s = new char[] { Space
, Com
ma };//

The result is array of strings

string object is an immutable
string returnNumber = "";
for (int i = 0; i < 1000; i++)
 returnNumber = returnNumber + i.ToString();

returnNumber = “0”
returnNumber = “1"
returnNumber = “12"
returnNumber = “123"
returnNumber = “1234”
returnNumber = “12345”
returnNumber = “123456”
 . . .
returnNumber = “123456789…999”

Do you know when we do like that we are assigning it again and again?

Here we are defining
a string called returnNumber a
nd after that, in the loop we
are concatenating the old one
with the new.

It's really like assigning 999 new strings !!!

The problem is that the string type is not
designed for this kind of operation. What
you want is to create a new string by
appending a formatted string each time
through the loop. The class you need is
StringBuilder.

Dynamic Strings (class StringBuilder)

The System.Text.StringBuilder class is used for creating and modifying strings.

Unlike String, StringBuilder is mutable.

The processing you can do on a StringBuilder is limited to substitutions and appending or
removing text from strings. However, it works in a much more efficient way.

When you construct a string, just enough memory gets allocated to hold the string. The
StringBuilder, however, normally allocates more memory than needed

StringBuilder

StringBuilder greetingBuilder = new StringBuilder(“Hello from all
the guys at Wrox Press. “, 150);

Then, on calling the Append() method, the remaining text is placed in the empty
space, without the need for more memory allocation.

greetingBuilder.Append(“We do hope you enjoy this book as much as
we enjoyed writing it”);

Capacity

Normally, we have to use StringBuilder to perform any manipulation of strings,
and String to store or display the final result.

StringBuilder members

The StringBuilder class has two main properties:
Length - indicates the length of the string that it actually contains;
Capacity - indicates the maximum length of the string in the memory allocation.

Str
ingBuilder sb = new StringBuilder(“Hello”); //Len
gth = 5StringBuilder sb = new StringBuilder(20

); //Capacity = 20//we can set Capa

StringBuilder members
The following table lists the main StringBuilder methods.

Method Purpose

Append() Appends the string to the current string

AppendFormat() Appends the string that has been worked out from a format
specifier

Insert() Inserts a substring into the current string

Remove() Remove characters from the current string

Replace() Replace all occurrences of a character by another character or a
substring with another substring in the current string

ToString() Returns the current string cast to System.String object (overriden
from System.Object)

Regular Expressions

Regular expressions are Patterns that can be used to match strings.
Regular expressions are a powerful language for describing and manipulating
text.
Regular expression is applied to a string—that is, to a set of characters. Often,
that string is an text document.

With regular expressions, you can perform high-level operations on strings. For
example, you can:

Identify all repeated words in a string (for example, “The
computer books books” to “The computer books”)

Convert all words to title case (for example, “this is a Title” to “This Is
A Title”)
Convert all words to title case (for example, “this is a Title” to “This Is
A Title”)

Separate the various elements of a URI (for example, given
http://www.wrox.com, extract the protocol, computer name, file
name, and so on)

Regular Expressions

using System.Text;using
S
ystem.T

ext.RegularExpressions;string text = Consol
e.Rea
dLine();str
ing r
e

Task: write a C# console application that takes some text as an input, and determines if
the text is an email address.

As you can see, a regular expression consists of two types of characters: literals and
metacharacters.
A literal is a character you wish to match in the target string.
A metacharacter is a special symbol that acts as a command to the regular expression
parser. The parser is the engine responsible for understanding the regular expression.

Text: Anna Jones and
a
 friend

 went to lunch Regex: went Matches: Anna
Jones
 and a frie
nd we
n

// to match the 'a' char
a
cter fo

llowed by any two characters. Text: abc
def a
nt cow Rege
x:
a

// matches 'a' followed
b
y two w

ord characters. Text: abc anaconda ant c
ow ap
ple Regex:
 a\w
\

// matches any three dig
i
ts in a

 row Text: 123 12 843 8472 Regex: \d\d
\d M
atches: 123
 12 8
4

//matches any three char

where t

he first character is 'd‘ or 'a' Text: a
bc de
f ant cow R
egex:

//matches any three char
a
cters w

here the second character is 'a', 'b', 'c'
or 'd
'. Text:
 abc
p

//matches any of the cha
r
acters

from 'a' to 'z' or any digit from //'0' to
'9' f
ollowed by
two w
o

// matches the character

'a' fol

lowed by zero or more word// characters. Te
xt:
 Anna Jones
 and
a

Metacharacters and their Description

Examples
using System;using Sy
s
tem.Text.RegularE
xpressions;// First we
 see the input string.
string input = "/con
t

Thanks
for Your Attention

By

