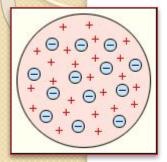


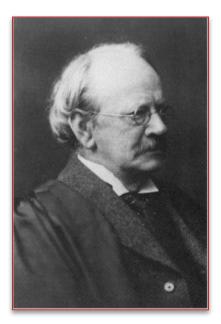
Тема 2


План лекции

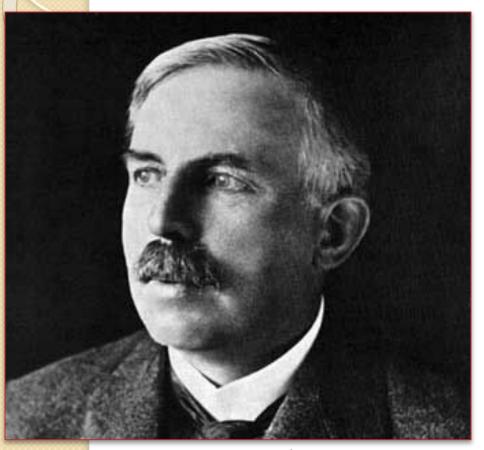
- Особенности квантовомеханического описания микромира. Корпускулярно-волновой дуализм
- Элементарные частицы и кварковая модель атома
- 3. Типы фундаментальных физических взаимодействий

Структурные уровни организации материи

marepriri	
Структурный уровень материи	Подуровни
МИКРОМИР	Физический уровень: субатомный уровень: кварки, лептоны ядерный уровень: нуклоны, ядра атомов Атомный уровень: атомы химических элементов Молекулярный уровень: молекулы веществ
МАКРОМИР	Макромолекулярный уровень: полимеры, комплексы молекул Физические тела
МЕГАМИР	Уровень геологических объектов, планет, звезд Уровень галактик и скоплений галактик

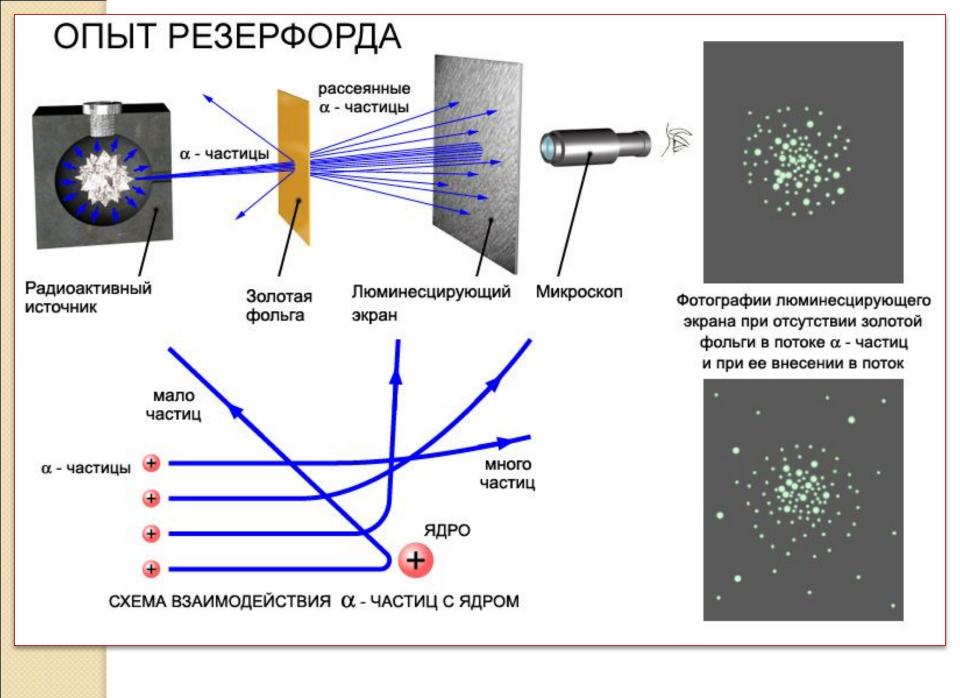

Модель атома Томсона

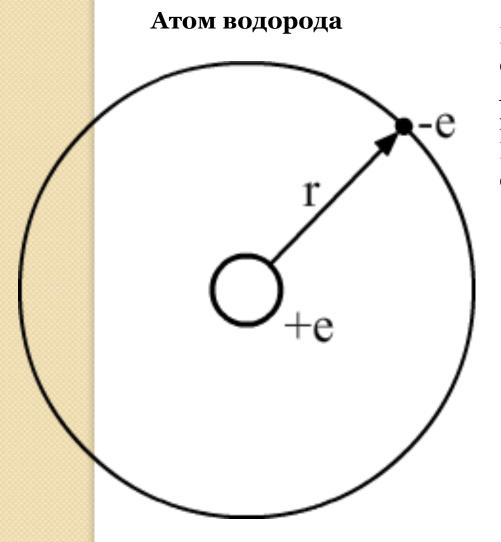
Атом представляет собой непрерывно заряженный положительным зарядом шар радиуса порядка 10^{-10} м, внутри которого около своих положений равновесия колеблются электроны.


Недостатки модели:

- 1.не объясняла дискретный характер излучения атома и его устойчивость;
- 2.не дает возможности понять, что определяет размеры атомов;
- 3.оказалась в полном противоречии с опытами по исследованию распределения положительного заряда в атоме (опыты, проводимые Эрнестом Резерфордом).

Джозеф Джон Томсон (1856 – 1940)


Модель атома Резерфорда


Эрнест Резерфорд (1871 – 1937)

Экспериментально исследовал распределение положительного заряда.

В 1906 г. зондировал атом с помощью α-частиц.

Атомное ядро – тело малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома. Диаметр ядра порядка $10^{-12} - 10^{-13}$ см.

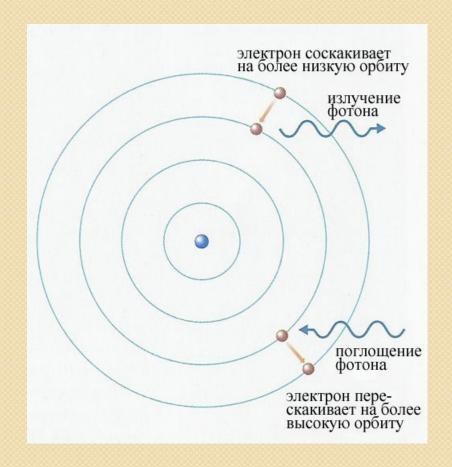
В атоме водорода вокруг ядра обращается всего один электрон. Ядро было названо **протоном**. $m_p = 1836,1 \cdot m_e$ Размер атома — это радиус орбиты его электрона.

Недостатки атома Резерфорда

- I. Эта модель не согласуется с наблюдаемой стабильностью атомов. По законам классической электродинамики вращающийся вокруг ядра электрон должен непрерывно излучать электромагнитные волны, а поэтому терять свою энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него.
- 2. Эта модель не объясняет наблюдаемые на опыте оптические спектры атомов. Оптические спектры атомов не непрерывны, как это следует из теории Резерфорда, а состоят из узких спектральных линий, т.е. атомы излучают и поглощают электромагнитные волны лишь определенных частот, характерных для данного химического элемента.

К явлениям атомных масштабов законы классической физики неприемлемы.

Квантовый подход к описанию атома


В 1913г. Великий датский физик Н.Бор применил принцип квантования при решении вопроса о строении атома

Два постулата Н.Бора:

- В атоме существуют стационарные орбиты, вращаясь по которым электрон не излучает
- 2. При переходе электрона из одного стационарного состояния в другое атом излучает или поглощает *порцию энергии*

МОДЕЛЬ АТОМА Н. БОРА

Согласно модели атома Бора, электрон перескакивает на более высокую орбиту при поглощении фотона и соскакивает на более низкую при излучении фотона

Квант

Квант (от лат. quantum — «сколько») неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения — и последнее называют квантом.

Идея М.Планка

Автор идеи квантования излучения – немецкий физик М.Планк

Сущность «парадоксальной гипотезы» Планка заключалась в том, что испускание и поглощение электромагнитной энергии атомами и молекулами происходит не непрерывно, а дискретно - порциями, или «квантами», как несколько позже предложил называть их Планк.

Энергия кванта

Энергия кванта электромагнитного излучения фиксирована и равна

E = hv

где h = 6,626·10⁻³⁴ Дж·с — постоянная Планка, фундаментальная физическая величина, определяющая свойства нашего мира, а v – частота излучения

Фотоэффект

<u>Фотоэффект</u> - явление испускания электронов с поверхности металла под действием света.

Т.е. свет выбивает (вырывает) электроны из металла.

Идея Эйнштейна (1905 г.)

- Свет имеет прерывистую дискретную структуру. Электромагнитная волна состоит из отдельных порций квантов, впоследствии названных фотонами.
- Квант поглощается электроном целиком.
 Энергия кванта передается электрону.
 (Один фотон выбивает один электрон.)
- Энергия каждого фотона определяется формулой Планка W = E = hv, где h постоянная Планка.

Уравнение Эйнштейна для фотоэффекта:

$$hv = A + \frac{mv^2}{2},$$

где **A** – работа выхода электронов из металла.

Уравнение получено в предположении, что каждый вылетающий электрон поглощает один фотон.

Бройля
Недостатки теории Бора указывали на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т.п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в

виде

определенной скоростью.

Волновые свойства микрочастиц. Волны де

Мы помним, что в *оптических явлениях* наблюдается своеобразный дуализм.

Наряду с явлениями дифракции, интерференции

характеризующейся определенными координатами и

малой механической частицы,

(волновыми явлениями) наблюдаются и явления, характеризующие корпускулярную природу света (фотоэффект, эффект Комптона).

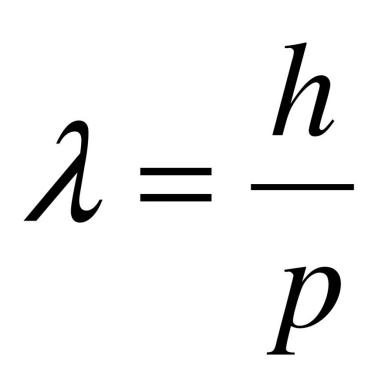
В 1924 г. Луи де Броиль выдвинул смелую типотезу, что дуализм не является особенностью только оптических явлений, а имеет универсальный характер:

частицы вещества также обладают волновыми свойствами.

Не только луч света, но и все тела в природе должны обладать и волновыми и корпускулярными свойствами одновременно

Квантовая механика устранила абсолютную грань между волной и частицей.

Основным положением квантовой механики, описывающей поведение микрообъектов, является корпускулярно-волновой дуализм, т.е. двойственная природа микрочастиц.


Так, поведение электронов в одних явлениях, например при наблюдении их движения в камере Вильсона или при измерении электрического заряда в фотоэффекте, может быть описано на основе представлений о частицах. В других же, особенно в явлениях дифракции, — только на основе представления о волнах.

Идея «волн материи», высказанная французским физиком Л. де Бройлем, получила блестящее подтверждение в опытах по дифракции частиц.

19

Формула длины волны электрона

Формула де Бройля устанавливает зависимость длины волны λ движущейся частицы вещества от ее импульса p (p= mv, где т — масса частицы, v — ее скорость) и постоянной Планка h.

Квантовая механика

Квантовая механика описывает свойства частиц с учетом их волновых особенностей

В ней состояние микрочастиц описывается принципиально поновому — с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах

$$\frac{d^2\Psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E-U)\Psi = 0$$

Уравнение Э. Шредингера

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Уравнение Э.Шредингера

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица.

Уравнение Э.Шредингера

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Соотношение неопределенностей В. Гейзенберга

Невозможно одновременно с точностью определить координаты и скорость квантовой частицы.

$\Delta x \cdot \Delta v > h/m$

где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка

- В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно.
- В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами <mark>изме</mark>рения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Чем меньше неопределенность в отношении одной $\frac{1}{1}$ переменной (например, Δx), тем более неопределенной $\mathsf{c}\mathsf{T}\mathsf{a}\mathsf{h}\mathsf{o}\mathsf{B}\mathsf{u}\mathsf{T}\mathsf{c}\mathsf{f}$ другая переменная ($\Delta\mathsf{v}$). Иными словами, если бы <mark>нам</mark> удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится.

Особенности квантовой теории

- Предсказания квантовой механики неоднозначны, они дают лишь вероятность того или иного результата.
- Вероятностное описание явлений в квантовой механике имеет иную природу, нежели в механике статистической. В последней вероятность появляется в результате усреднения значений для множества частиц. В квантовой механике она изначальна и справедлива как для множества, так и для единственной частицы.

Особенности квантовой теории

 Причина вероятностного характера предсказаний заключается в том, что свойства объектов микромира нельзя изучать, отвлекаясь от способа наблюдения. В зависимости от него микрообъект проявляет себя либо как волна, либо как частица.

Принцип дополнительности H. Бора

Для полного описания квантовомеханического объекта требуется применение двух различных наборов понятий, один из которых описывает данный объект как волну, а другой – как частицу. Эти наборы понятий

не противоречивы, но взаимодополнительны.

Элементарные частицы

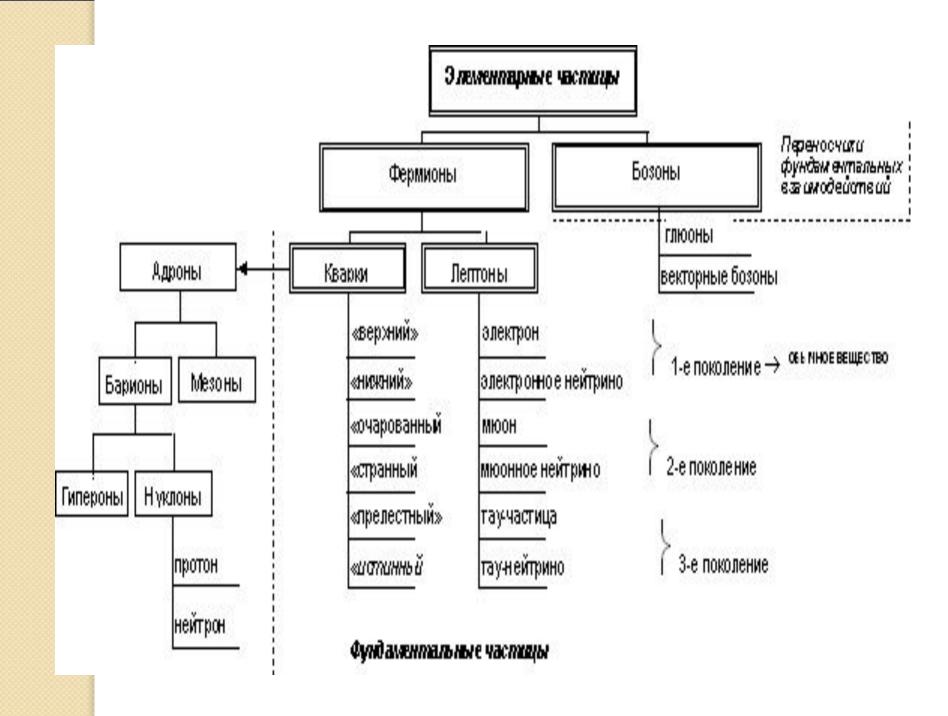
Ныне сформировалось убеждение, что абсолютной элементарности не существует.

Условно же принято считать элементарными те частицы, у которых сегодня не обнаруживается внутренняя структура, а размеры не превышают величины 10⁻¹⁵см.

Характеристики элементарных частиц

Физические величины, характеризующие элементарные частицы, это масса, заряд, спин, время жизни, внутренние квантовые числа.

Спин (англ. spin — вертеть[-ся]) характеризует собственный момент количества движения элементарных частиц. Спин имеет квантовую природу и не связан с перемещением частицы как целого.


Квантовое число́ — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы. Квантовые числа — целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему.

Характеристики элементарных частиц

- В зависимости от времени жизни элементарные частицы делятся на:
- *Стабильные* (электрон, протон, фотон и нейтрино)
- Квазистабильные (распадаются при электромагнитных взаимодействиях, среднее время жизни 10⁻²⁰с
- Резонансы (распадаются за счет сильного взаимодействия, среднее время жизни 10⁻²²- 10⁻²⁴с

Классификация элементарных частиц

Элементарные частицы

- По величине спина все элементарные частицы делятся на два класса:
- бозоны частицы с целым спином (например, фотон, глюон, мезоны).
- фермионы частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино)
 - Группа фермионов состоит из двух подгрупп:

лептоны и кварки

Лептоны

Лепто́ны (греч. λεπτός — λεπτός — λεπτός — λεπτός — λεπτοίς —

Лептоны вместе с кварками (которые участвуют во всех четырёх взаимодействиях, включая сильное) составляют класс фундаментальных фермионов — частиц, из которых состоит вещество и у которых неизвестна внутренняя структура.

Существует 6 лептонов:

- электрон,
- мюон,
- тау-лептон,
- электронное нейтрино
- мюонное нейтрино,
- тау-нейтрино

Адроны

Составные частицы

адроны — они состоят из кварков и подразделяются, в свою очередь, на:

барионы — частицы, состоящие из трех кварков (к ним, в частности, относятся протон и нейтрон);

мезоны — адроны, составленные парой «кварк — антикварк»;

антикварков.

Бозоны

Бозо́ны — частицы с целым значением спина. Являются переносчиками взаимодействий.

Элементарные бозоны:

- фотон (электромагнитное взаимодействие),
- глюон (сильное взаимодействие)
- промежуточный векторный бозон (слабое взаимодействие).

Кварки

Ква́рк — фундаментальная частица в, обладающая электрическим зарядом, кратным е/3, и не наблюдающаяся в свободном состоянии. Кварки являются точечными частицами, примерно в 20 тысяч раз меньше размера протона. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «ароматов» кварков

Кварки

Кварк		Заряд	
u <i>или</i> р	(верхний или протонный)	+ 2/3	
d <i>или</i> n	(нижний <i>или</i> нейтронный)	- 1/3	
С	(очарованный)	+ 2/3	
s	(странный)	- 1/3	
b	(красивый)	+ 2/3	
t	(истинный)	- 1/3	

Поколения частиц

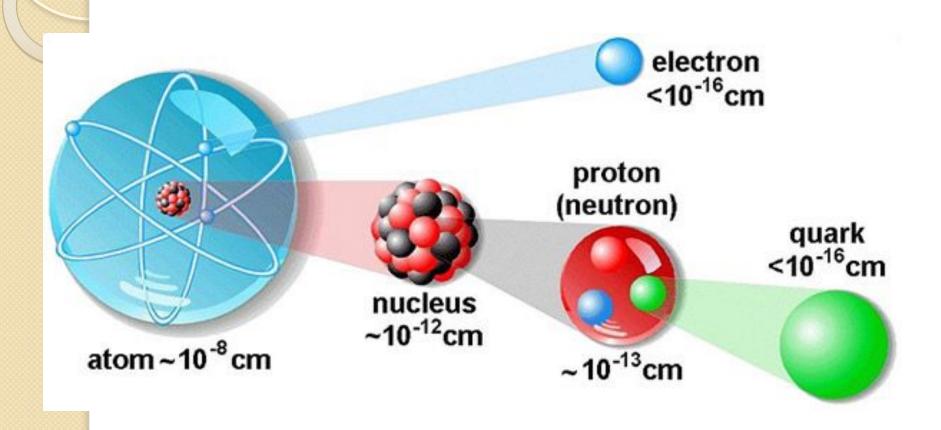
Первое поколение

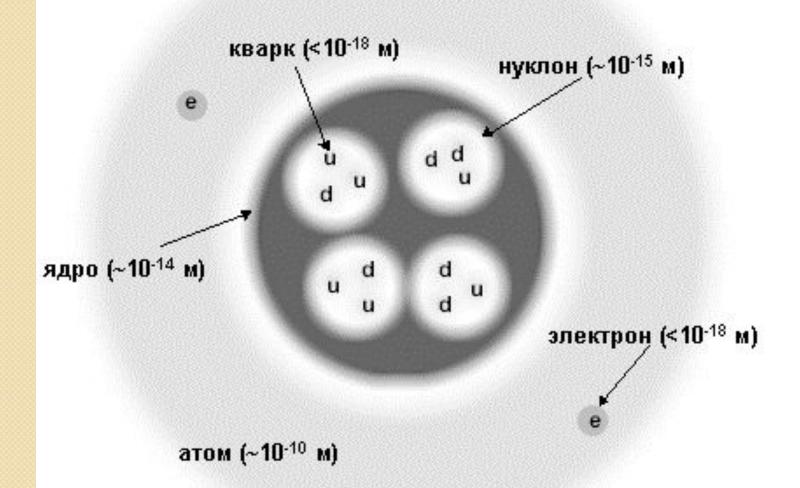
Электрон Электронное нейтрино u-кварк («верхний») d-кварк («нижний»)

Второе поколение

Мюон Мюонное нейтрино

s-кварк («странный») с-кварк («очарованный»)

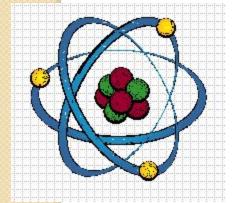

Третье поколение


Тау-лептон Тау-нейтрино t-кварк («истинный») b-кварк («прелестный»)

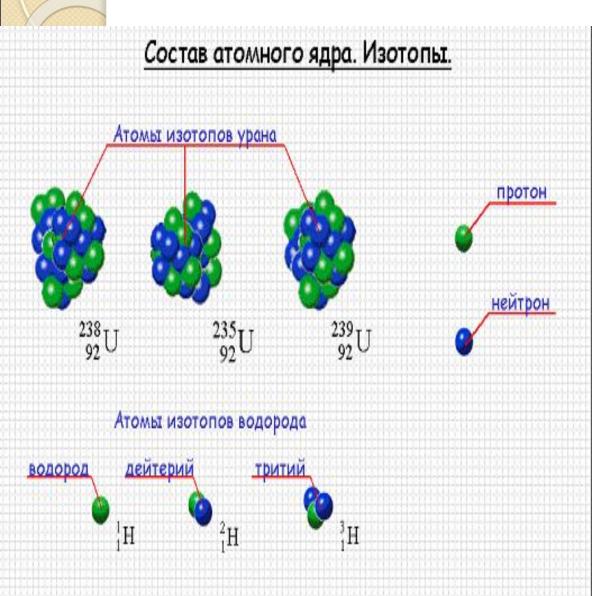
Строение атома

- Атом- мельчайшая химически неделимая электронейтральная частица вещества.
- В центре атома находится положительно заряженное ядро, вокруг которого вращаются отрицательно заряженные электроны.
- Виды элементарных частиц: протоны (р), нейтроны (п), электроны (е).
- Общее число протонов и нейтронов в ядре атома называют массовым числом (А). A= N + P
- Химический элемент- вид атомов с определенным зарядом ядра.
- Изотопы- разновидности атомов одного и того же химического элемента, имеющие одинаковое число протонов в ядре, но разную массу.

Кварковая модель атома

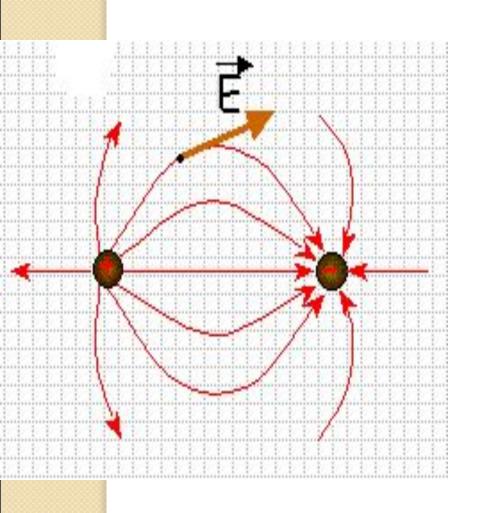


Сильное


Электромагнитное

Гравитационное

Слабое


Сильное

Обуславливает связь нуклонов в ядре. Чрезвычайно огромные ограниченного радиуса (**R=I0**-I3 м) силы, действующие только между соседними нуклонами. Они обуславливают сильную связь нуклонов в ядре и превосходят гравитационные силы в 10³⁹ раз.

Электромагнитное

Характерно для всех элементарных частиц за исключением нейтрино, антинейтрино

Переносчики взаимодействия — фотон
Радиус действия —

Интенсивность (по сравнению с
сильным) — 1/137
Характерное время — 10⁻²⁰с

Слабое

Ответственно за распад и взаимодействие частиц, происходящих с участием нейтрино или антинейтрино, а так же безнейтринные процессы с большим временем жизни (ф>10⁻¹⁰c)

Переносчики взаимодействия – промежуточные векторные бозоны Радиус действия – 2·10⁻¹⁶ см

Интенсивность (по сравнению с сильным) – 10⁻⁵

Характерное время - 10⁻¹³ с

Гравитационное

Присуще всем телам. <u>Переносчики</u> <u>взаимодействия</u> – гравитоны.

<u>Радиус действия</u> - ∞ <u>Интенсивность</u> (по сравнению с сильным) $- 10^{-39}$

ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

Взаимо- действие	Сила относительн о единицы	Радиус действия	Частицы участники	Частицы переносчики
Сильное	1	10 ⁻¹³	Кварки и нуклоны	Глюоны
Слабое	10 ⁻⁵	2·10 ⁻¹⁶	Лептоны и кварки	Векторные бозоны
Электромаг нитное	1/137	Большой ∞	Все с электр. зарядами	Фотоны
Гравитацио нное	10 ⁻³⁹	Большой ∞	Bce	Гравитоны

Теория великого объединения

Согласно современным представлениям, при очень высоких температурах (и, соответственно, энергиях) все четыре взаимодействия объединяются в одно. Так, при энергии 100 ГэВ объединяются электромагнитное и слабое взаимодействия. Такая энергия соответствует температуре Вселенной через 10-10 с после Большого Взрыва. Это открытие, сделанное в ЦЕРНе, позволяет предположить, что при энергии порядка 1015 ГэВ произойдет объединение электромагнитного, слабого и сильного взаимодействий, а при 1019 ГэВ к ним присоединится и гравитационное. Эти теории называются Теориями Великого Объединения (TBO).