
Programming Languages and
Program Development

Slid
e 1

What You Will Learn About

▪ What a programming language is
▪ Machine language and assembly language
▪ High-level programming languages
▪ The shortcomings of early languages
▪ Popular programming languages

Slid
e 2

What You Will Learn About

▪ The six phases of the program development life
cycle (PDLC)

▪ Why top-down programming makes programs
easier to debug and maintain

▪ The three basic types of control structures
▪ Syntax errors and logic errors in programs

Slid
e 3

Programming Languages

▪ Programming languages are artificial languages
created to tell the computer what to do

▪ They consist of vocabulary and a set of rules to write
programs

▪ The program development life cycle (PDLC) is an
organized method of software development

Slid
e 4

Machine Language

Ada

PascalFortran
COBOL

Assembly Language

Smalltalk

Visual Basic
BASIC

JavaC and C++

Development of Programming
Languages

▪ Programming languages are classified by
levels or generations

▪ Lower-level languages are the oldest
▪ The five generations of programming

languages are:
� Machine languages
� Assembly languages
� Procedural languages
� Problem-oriented languages
� Natural languages

Slid
e 5

First-Generation Languages

▪ Machine language:
� Consists of binary numbers (0s

and 1s)
� Is the earliest programming

language
� Is the only language the

computer understands
without translation

� Is machine dependent
■ Each family of processors has

its own machine language

Slid
e 6

Second-Generation Languages
▪ Assembly language:
� Resembles machine language
� Is a low-level language
� Uses brief abbreviations for

program instructions.
■ Abbreviations are called

mnemonics

� A program is written in source
code (text file) and translated
into machine language by an
assembler

Slid
e 7

Third-Generation Languages

▪ Procedural languages:
� Are high-level languages that tell the computer what

to do and how to do it
� Create programs at a high level of abstraction
� Are easier to read, write, and maintain than machine

and assembly languages
� Use a compiler or interpreter to translate code

▪ Fortran and COBOL are third-generation
languages

Slid
e 8

Compilers and Interpreters

▪ A compiler is a program that changes source
code to object code

▪ An interpreter translates source code one line at
a time and executes the instruction

Slid
e 9

Third-Generation Languages
(continued)

Slid
e
10

▪ Spaghetti Code and the Great Software Crisis:
� GOTO statements resulted in programs that were

difficult to follow
� This problem led to the software crisis of the 1960s

■ Programs were not ready on time
■ Programs exceeded their budgets
■ Programs contained too many errors
■ Customers were not satisfied

Third-Generation Languages
(continued)

▪ Structured programming languages:
� Were developed to improve software

development
� Include Algol and Pascal
� Forbid the use of GOTO statements
� Use control structures

■ IF-THEN-ELSE

Slid
e
11

Third-Generation Languages
(continued)

▪ Modular programming languages:
� Were developed because of problems in

structured programming languages
� Are used to create programs that are divided into

separate modules
■ Each module carries out a special function

� Require specified input to produce specified
output

Slid
e
12

Fourth-Generation Languages

▪ Types of fourth-generation languages include:
� Report generators

■ Languages for printing database reports

� Query languages
■ Languages for getting information out of databases

▪ Fourth-generation languages are nonprocedural
� They do not force programmers to follow procedures

to produce results

Slid
e
13

Object-Oriented Programming

▪ Object-oriented programming (OOP):
� Relies on component reusability

■ The ability to produce program modules that perform a
specific task

� Eliminates the distinction between programs and
data

� Uses objects that contain data and procedures

Slid
e
14

Objects
▪ Objects are units of information

that contain data as well as
methods that process and
manipulate the data

▪ Classes of objects:
� Hierarchy or category of

objects
� Objects at the top of the

category are broader in scope
than the subclass objects

▪ Inheritance refers to an object’s
capacity to “pass on” its
characteristics to its subclasses

Slid
e
15

Common Business-Oriented Language (COBOL)

▪ COBOL:
� The earliest (1959)

high-level language
� The most widely

used business
language

� A proven way to do
accounting,
inventory, billing, and
payroll

� Requires
programmers to
explain what the
program is doing at
each step

Slid
e
16

Sample Cobol program

Formula Translator (Fortran)

▪ Fortran:
�Began in the 1950s
�Is suited to scientific,

mathematical, and
engineering
applications
�Is used to solve

complex equations
�Features simplicity,

economy, and ease of
use

Slid
e
17

Sample Fortran program

Ada

▪ Ada:
� Named after

Augusta Ada Byron
� Incorporates

modular
programming

� The required
language for the U.S.
Defense Department

� Suitable for control
of real-time systems
(missiles)

Slid
e
18

Sample Ada program

Beginner’s All-Purpose Symbolic
Instruction Code (BASIC)

▪ BASIC:
� An easy-to-use language available on personal

computers
� Widely taught in schools as a beginner’s

programming language
� Designed as an interpreted language

Slid
e
19

Sample BASIC program

Visual Basic (VB)

▪ Visual Basic:
�Is widely used in program

development packages
�Uses event-driven

programming
�Enables the programmer to

develop an application by
using on-screen graphical
user interfaces

Slid
e
20

Sample Visual Basic

Pascal

▪ Pascal:
� Is named after Blaise Pascal
� Encourages programmers to write well-structured

programs
� Widely accepted as a teaching language
� Has been updated to reflect new approaches to

programming
Slid
e
21

Sample Pascal program

C

▪ C:
� Was developed by

AT&T’s Bell Labs in
the 1970s

� Combines
high-level
programming
language with
assembly language

� Programmers
manipulate bits of
data within a
processing unit

� Difficult to learn and
programming is time
consuming

Slid
e
22

Sample C program

Smalltalk

▪ Smalltalk:
� Developed in the 1970s by

Xerox Corp
� “100% pure” object-oriented

programming language
� Not often chosen for

software development

Slid
e
23

Sample Smalltalk program

C++

▪ C++:
� Incorporates

object-oriented features
� Is widely used for

professional program
development

Slid
e
24

Sample C++ program

Java

▪ Java:
� Developed by Sun Microsystems
� An object-oriented, high-level programming

language with a twist
� First true cross-platform programming language
� Gained acceptance faster than any other

programming language
� A simplified version of C++

Slid
e
25

Java

▪ Java, continued :
� Java is designed to run on any computer platform
� Java Virtual Machine enables cross-platform use
� Java applets or small programs are downloaded to

computers through networks
� Weaknesses include:

■ The security risk in downloading applets
■ The speed in running the programs

Slid
e
26

Sample Java Program

Slid
e
27

Web-Based Languages

▪ Markup languages:
� Hypertext markup language (HTML) sets the

attributes of text and objects within a Web page
� Extensible markup language (XML) is used for

sharing data and objects in a Web environment
▪ Scripting languages:
� VBScript is used to write short programs (scripts) that

are embedded in Web pages
� JavaScript is used to write scripts on Web pages

▪ Visual Studio .NET:
� Used for the development of scripts and programs

that are accessible from the Web
Slid
e
28

The Program Development Life
Cycle (PDLC)

▪ The PDLC was introduced in the 1970s to address
problems in creating programs

▪ It provides an organized plan for breaking down the
task of program development into manageable parts

▪ Six phases of the PDLC:
1. Defining the problem
2. Designing the program
3. Coding the program
4. Testing and debugging the program
5. Formalizing the solution
6. Implementing and maintaining the program

Slid
e
29

Phase 1: Defining the Problem

▪ The first step in program development
▪ Systems analysts provide program specifications (specs)

to programmers
▪ Specs define:
� Input data
� Processing
� Output
� Appearance of user interface

Slid
e
30

Phase 2: Designing the Program

▪ Programmers create the program’s design
� Top-down design focuses on the program’s main

goal (main routine), then breaks the program into
manageable components (subroutines/modules)

� Control structures are used to see how each
subroutine will do its job

▪ Developing an algorithm is a step-by-step description of
how to arrive at a solution

▪ Program design tools:
� Structure charts – show the top-down design
� Flow charts – show the logic of program
� Pseudo code – alternative to flow charts

Slid
e
31

Structured Design

▪ Control structures are logical constructs that specify
how the instructions in a program are to be executed

▪ Three types of control structures:
� Sequence control structure – Instructions are

executed in the order in which they appear
� Selection control structures – The program

branches to different instructions depending on
whether a condition is met; IF…THEN…ELSE

� Repetition control structure – The program repeats
the same instructions over and over; DO-WHILE and
DO-UNTIL

Slid
e
32

Structure Chart and
Flowchart

Slid
e
33

Structure Chart

Flowchart

Phase 3: Coding the Program

▪ Coding requires the translation of the algorithm into
specific program instructions

▪ An appropriate programming language is chosen, and
the code is typed according to its syntax rules

Slid
e
34

Phase 4: Testing and Debugging the
Program

▪ Testing and debugging eliminate all errors
▪ Syntax and logic errors are corrected
▪ Debugging is the process of eliminating errors

Slid
e
35

Phase 5: Formalizing the
Solution

▪ Documentation is created for future use
▪ The variable names and definitions, a description of the

files needed, and the layout of the output are produced
▪ A user manual is developed to explain how the program

works

Slid
e
36

Phase 6: Implementing and
Maintaining
the Program

▪ The program is:
� Tested by users
� Thoroughly documented
� Maintained and evaluated regularly

Slid
e
37

Summary

● A programming language is an artificial language
consisting of a vocabulary and a set of rules

● Machine language is the lowest-level programming
language

● Assembly language contains symbols for programming
instructions

● Third-generation (high-level) languages require
programmers to specify the procedures to be followed

● Object-oriented languages combine procedures and data

Slid
e
38

Summary, continued

● The PDLC’s six phases are:
● Defining the program
● Designing the program
● Coding the program
● Testing and debugging the program
● Formalizing the solution
● Implementing and maintaining the program

● Top-down programming makes programs easier to debug
and maintain

● Debugging requires finding and correcting syntax errors
and logic errors

Slid
e
39

