Тема. АВАРИИ НА ХИМИЧЕСКИ И РАДИАЦИОННО ОПАСНЫХ ОБЪЕКТАХ

Цель: Дать характеристику XOO и POO, содержание этапов развития аварий на них. Ознакомить с токсическими характеристиками и классификацией AXOB, основными дозиметрическими характеристиками, радиационными эффектами облучения людей и классификацией аварий на AЭC

Учебные вопросы:

- 1. Аварии на химически опасных объектах
- 2. Аварии на радиационно опасных объектах

Химически опасные объекты

в России:	
□ общее количество – более 3600	
□ в зонах потенциальной химической опасности расположены городов с населением более 100 тыс. чел. в каждом	146
□ общая площадь, на которой может возникнуть химическое заражение, составляет около 300 тыс. км² с населением около млн. чел.	60
в Северо-Западном регионе:	
□ общее количество – около 400	
 в зонах потенциальной химической опасности расположено 30 городов и населенных пунктов 	
□ в зонах заражения может оказаться до 70% населения 15 млн. чел.)	(из
в Санкт-Петербурге:	
□ общее количество – около 70	
□ в результате аварий могут пострадать свыше 3,6 млн. чел.	

Химически опасный объект (XOO) – это объект, на котором хранят, перерабатывают, используют или транспортируют аварийно химически опасные вещества, при разрушении которого могут произойти гибель или химическое поражение людей, сельскохозяйственных животных и растений, а также химическое заражение ОПС

К химически опасным объектам относятся:

- 1. Предприятия химической, целлюлозно-бумажной, текстильной, металлургической и других отраслей промышленности, *производящие* и *хранящие* AXOB
- Предприятия, потребляющие АХОВ (станции водоподготовки, холодильники, овощебазы и т.п.)
- 3. Железнодорожные *станции*, *порты*, *терминалы* и *склады* на промежуточных или конечных пунктах перемещения AXOB
- 4. Транспортные средства по перевозке AXOB
- 5. Магистральные газо- и продукто*проводы*

Распределение XOO и городов по степени химической опасности для населения

Распре- деление		епень о ОО для н			Число химич. опасных	н. города ^{**}			
	I	II	III	IV	городов	I	II	III	
норма- тивное, тыс.чел.	>75	40-75	до 40	C33*		>50	30-50	10-30	
СевЗап. регион,%	10	7	74	9	11	82	-	18	

Примечание: * С33 – санитарно-защитная зона

** с населением более 100 тыс.чел.

Аварийно химически опасное вещество (АХОВ) – это опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах) (ГОСТ Р.22.9.05-95)

Вредные вещества.....≈ 60 тыс.

Сильно действующие ядовитые вещества (СДЯВ)......107

Аварийно химически опасные вещества (AXOB).....21

Токсическая концентрация — количество вещества, находящееся в единице объема воздуха и вызывающее токсический эффект (С, мг/л или мг/м³)

Предельно допустимая (безопасная) – максимальная концентрация, не оказывающая прямого или косвенного вредного воздействия на человека

Смертельная – вызывающая смертельный исход у 50% пораженных за время экспозиции 30…60 минут

Токсическая доза – количество вещества, попавшее организм и вызвавшее определенный токсический эффект

органы дыхания \longrightarrow *ингаляционная* токсодоза, $\textbf{\textit{D}}$ мг·мин/л

кожа

 \nearrow

желудочнокишечный тракт yдельная токсодоза, $m{D}$ мг/кг

<mark>абсолютны</mark>й этиловый спирт:

2,5...3,5 г/кг – сильное опьянение

4...5 г/кг - тяжелое опьянение

от 6 г/кг – смертельная доза

		-	TTUTC		T	
Наименовани	Характер действия	Наименование	ПДК в воздухе, мг/м ³		Токсодоза, мг·мин/л	
AXOB	действия	группы	рабочая зона	насел. пункт	пороговая	смертельная
Хлор	воздействуют на	вещества с	1,0	0.03	0,6	6,0
Фосген	дыхательные пути человека	преимущественно удушающим				
Соляная кислота		действием	5,0	0.2	2,0	7,0
Окись углерода	нарушают	вещества преимущественно				
Синильная кислота	энергетический обмен	общеядовитого действия	0,3	0,01	0,2	2,0
Фенол		деиствия				
Амил	вызывают отек легких при инга-	вещества совместного				
Акрилонитрил	ляционном воз- действии и нару- шают энергети-	удушающего и общеядовитого				
Азотная кислота	ческий обмен	действия	5,0	0,15	3,0	-
Сернистый ангидрид	при резорбции					
Тетраэтисвинец	действуют на генерацию и пере-					
Сероуглерод	дачу нервного	нейротропные яды	1,0	0,005	45	300
Фосфорорган. соед	импульса					
Гептил	вызывают отек легких с тяже-	вещества совместного удушающего и				
Аммиак	лым поражением	нейротропного	20	0,04	15	100
Гидразин	ЦНС	действия				
Окись этилена	нарушают мета-		1.0	0.3	2.2	25

10

Классификация АХОВ

(по степени опасности)

Показатель	1 класс	2 класс	3 класс	4 класс
ПДК в воздухе рабочей зоны, мг/м ³	< 0,1	0,11,0	110	> 10
Средняя смертельная доза при попадании в желудок, мг/кг	< 15	15150	1505000	> 5000
Средняя смертельная доза при попадании на кожу , мг/кг	< 100	100500	5002500	> 2500
Средняя смертельная концентрация в воздухе, мг/м ³	< 500	5005000	500050000	> 50000

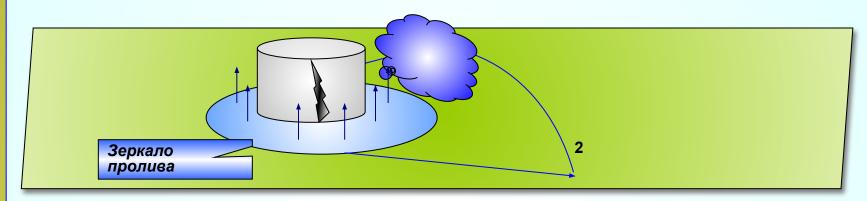
Авария на XOO - любые нарушения технологического процесса, повреждения емкостей, трубопроводов и транспортных средств, приводящие к выбросу (выливу) АХОВ в окружающую среду в опасных количествах

Степень опасности и возможный ущерб при ЧС на ХОО зависят от:

- 1. Характеристик ХОО (типа АХОВ, его массы, способов хранения и др.)
- 2. Метеоусловий в районе XOO (скорость и направление ветра в приземном слое воздуха, температура и др.)
- 3. Физико-географических условий в районе XOO (тип рельефа местности, тип растительности, характер застройки жилых районов и др.)
- 4. Времени возникновения ЧС на ХОО

Первый тип ЧС

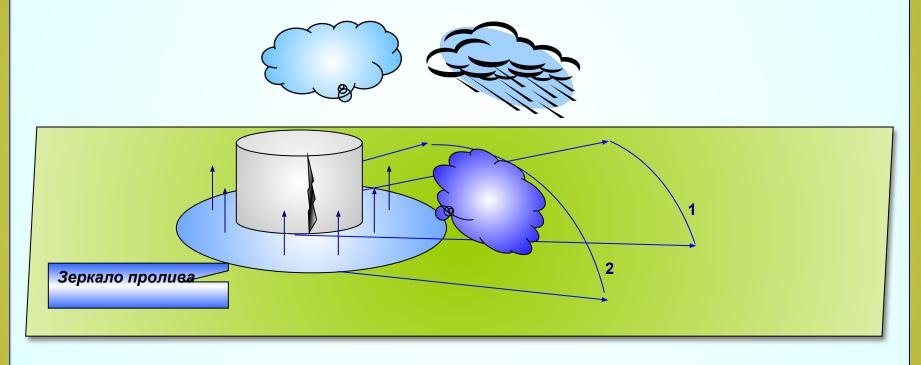
с образованием только первичного облака



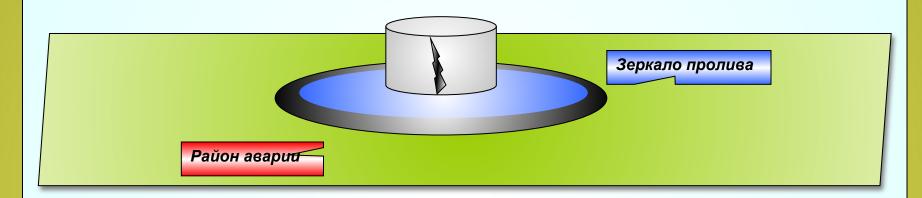
Первичное облако:

- 1. *Образуется* непосредственно в момент аварии за счет бурного испарения AXOB
- 2. **Характерно** для низкокипящих (температура кипения ниже +20°C) AXOB, хранящихся под давлением
- 3. Перенос ветром сопровождается гравитационным оседанием мелких капель АХОВ, в результате чего происходит заражение местности и объектов
- 4. *Глубина распространения* от единиц до нескольких десятков километров например: хлор 0,5...2,5км; аммиак 1,5...30км)
- 5. *Граница зоны распространения* определяется пороговой токсодозой для времени воздействия 40...60мин

Второй тип ЧС


с образованием пролива и только вторичного облака

Вторичное облако:


- 1. *Формируется* за счет испарения жидких АХОВ из зоны разлива в районе аварии
- 2. Время испарения от нескольких часов до нескольких суток
- 3. *Поражающее действие* оказывают только пары АХОВ через органы дыхания
- 4. *Глубина распространения* от единиц до десятка километров (например: хлор 0,5...9км; аммиак 0,5...4км)
- 5. *Граница зоны распространения* определяется пороговой токсодозой для времени воздействия 40...60мин

Третий тип ЧС с образованием пролива, первичного и вторичного облаков

Четвертый тип ЧС

с заражением только территории

Заражение территории:

- 1. Зона заражения, как правило, ограничена районом аварии
- 2. *Радиус* несколько сотен метров
- 3. **Максимальная концентрация** АХОВ
- 4. *Поражение* возможно как при вдыхании зараженного воздуха, так и при соприкосновении с зараженными поверхностями

Радиация - ионизирующие излучения (ИИ), превращающие электрически нейтральные атомы в заряженные частицы - ионы

Ионизирующие излучения:

заряженные частицы (α, β) γ - излучение рентгеновское излучение нейтроны

Радиоактивность - способность какого-либо источника в результате его радиоактивного распада испускать ИИ

ДОЗОВЫЕ ВЕЛИЧИНЫ

Поглощенную дозу используют для определения радиационных эффектов от любых видов ИИ в любых объектах неживой природы, а также при оценке действия гамма-рентгеновского излучения на биоткань $(D_{\Pi} = D)$.

Экспозиционная доза характеризует поле гамма-рентгеновского излучения по его ионизирующей способности в воздухе, а также определяет воздействие этих ИИ на биоткань.

Для оценки раздельного действия любых видов ИИ, а также их совместного действия на живые организмы (человека) применяют эквивалентную дозу. При действии гамма-рентгеновскогоизлучения на биоткань $D_{3} = D_{1} = D$

Источник	Поле	The state of the s	чение
Интенсивность МэВ/(м ² ·с)	экспозиционная доза Рентген	неживых объектов поглощенная доза Грэй (рад)	живых организмов эквивалентная доза Зиверт (бэр)

На конечный результат биологического действия ИИ влияют:

- 1. Продолжительность облучения:
 - однократное
 - многократное
 - хроническое
- 2. Величина общей дозы
- 3. Характер облучения:
 - внешнее внутреннее
 - общее местное

продолжительность облучения

Виды облучения

Однократное (*t*_{обл} ≤ 4 суток)

Многократное

 $(t_{\text{обп}} > 4 \text{ суток})$

$$D_{\Theta O II} = D_1(0,1+0,9e^{-t/\tau_B})$$

Хроническое

$$D_{\Theta O \Pi}^{\text{xp}} = D_{\text{H}}(7,2+0,1t)$$

ВЕЛИЧИНА ОБЩЕЙ ДОЗЫ

Степени лучевой болезни

Степень	Доза излучения, рад, при облучении длительностью				co (чество і степены і лучево	Количество		
лучевой болезни	одно- кратно	15 сут.	30 сут.	60 сут.	I	II	III	IV	смертельных исходов, %
I ст. – легкая	100	110	130	150	50	0	0	0	0
(100250 рад)	200	220	250	300	80	20	0	0	03
II ст. – средняя	300	330	380	450	20	70	10	0	1525
(250400 рад)	400	450	500	600	0	50	50	0	3050
III ст. – тяжелая	500	600	700	800	0	20	70	10	6080
(400600 рад)	600	700	900	1000	0	0	50	50	95100
IV ст. – крайне	800	1000	1200	1300	0	0	20	80	100
тяжелая	1000	1200	1400	1600	0	0	0	100	100
(более 600 рад)									

ХАРАКТЕР ОБЛУЧЕНИЯ

ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

27

Предпосылки и причины возникновения аварий на АЭС

Характерные предпосылки аварийных ситуаций

- 1. Потери теплоносителя
- 2. Непредвиденный переход ЦРД в надкритический режим

Причины возникновения аварий:

- 1. Отказ оборудования
- 2. Ошибочные действия персонала
- 3. Стихийные бедствия
- 4. Случайные или преднамеренные воздействия различными видами оружия

ВЕЛИЧИНА ОБЩЕЙ ДОЗЫ

Допустимые дозы облучения Военное время

- · однократная доза (до 4-х суток) 50 рад;
- в течении 30 суток 60 рад;
- в течении 3-х месяцев 80 рад;
- в течении 1 года 100 рад.

(«Рекомендации по оценке последствий воздействия ПФ ЯВ на личный состав ВС РФ» – Утв. НГШ ВС РФ 04.02.2004г.)

Мирное время

Персонал группы «А»	Персонал группы «Б»	Население
20 м3в в год в среднем за любые последовательные 5 лет, но не более м3в в год	¼ для персонала группы «А» (5 мЗв в год в среднем за 50любые последовательные 5 лет, но не более мЗв в год)	1 м3в в год в среднем за любые последовательные 2,55 лет, но не более 5 м3в в год

(«Нормы радиационной безопасности (НРБ-99)» – Утв. 02.07.2009г.)