Введение в остеологию (общие данные об аппарате движения)

И.Н. Путалова

План лекции

- Общие данные о строении опорнодвигательного аппарата.
 Функциональное значение костной системы.
- Кость как орган. Классификация костей.
- Развитие костей.

Опорно-двигательный аппарат

Аппарат движения Антигравитарный аппарат противодействие силе земного притяжения

- anti (греч.) против, противоположное действие
- gravis (лат.) тяжёлый
- На долю опорно-двигательного аппарата приходится до 72,5 % от общей массы тела

Мышечная система является **активной частью** (составляет 1/5), а костная — **пассивной частью** (составляет 1/5 – 1/7) ОПОРНО-ДВИГаТЕЛЬНОГО аппарата.

- Скелет человека насчитывает около 208 костей (36-40 непарные).
- У *мужчин* скелет составляет больше 10%, а у *женщин* 8,5 % от общей массы тела

Кости и их соединения объединяются понятием – **скелет**

- skeletos (греч.) высушенный, skelos (греч.) бедренная кость (самая большая кость у человека).
- Старославянское слово **кощь** (**кощть**) означает сухой, тощий.
- Наука или раздел анатомии, посвященный Изучению костного скелета называется ОСТЕОЛОГИЕЙ

Функциональное значение скелета (костной системы) 1. Механические функции:

- 1). Опорная (наличие мест для прикрепления мягких тканей).
- 2). Защитная (череп, грудная клетка, таз)
- 3). Моторная (двигательная).

Движения возможны благодаря форме костей в виде длинных и коротких рычагов, образующих подвижные соединения — суставы.

2. Биологические функции:

- 1). Обменная.
- **Depono (лат.)** складывать, откладывать.
- В костях сосредоточено до 99% тканевого кальция, 87% фосфора, 58% магния, 46% натрия

2). Гомеостатическая

гомеостаз homois (греч.) — подобный, сходный; **stasis** (греч.) — стояние, неподвижность)

Ионы кальция и натрия находятся в кости как в стабильной, так и в лабильной фракциях

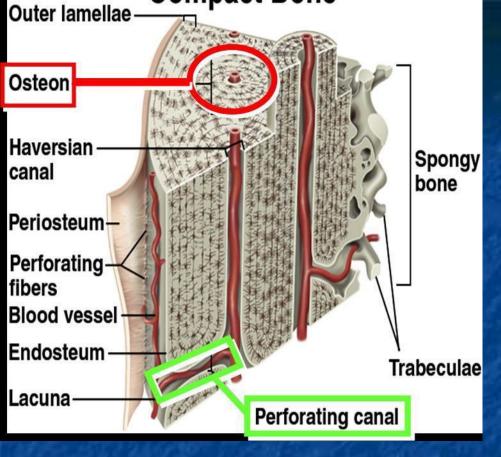
(25-68% натрия, депонированного в кости, обменивается в течение 4-х часов).

На депонирование и обмен минералов влияют гормоны щитовидной, паращитовидной желез и коры надпочечников.

3). Кроветворная

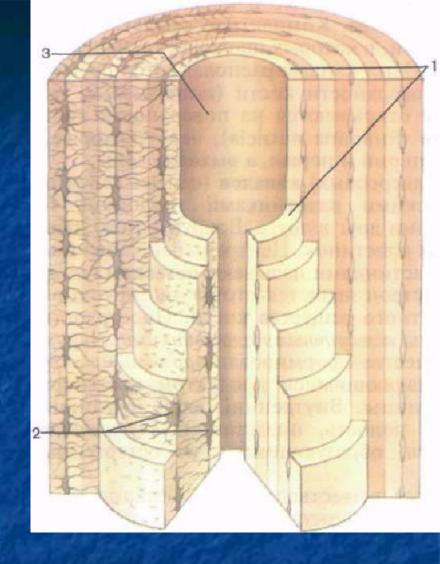
Связана не только с красным костным мозгом, но и с костью в целом, поскольку развитие и функция костного мозга отражаются на строении костного вещества и, наоборот, усиленное движение способствует кроветворению.

Масса красного костного мозга составляет 4,6 % от массы тела.

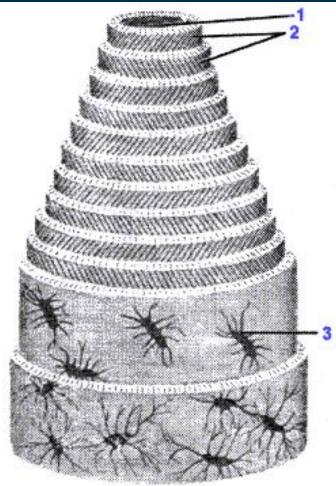

Кость как орган. Строение кости.

Ткани, составляющие кость:

1. Костная ткань (костное вещество).

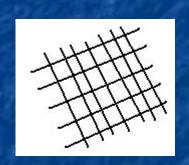

Основной структурной единицей кости является остеон.

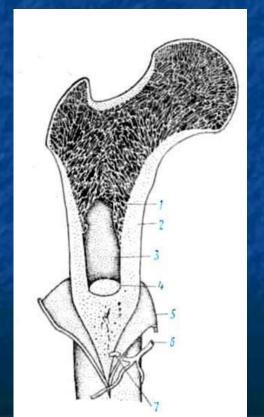
osteon (греч.) – кость



- 1. Костные пластинки.
- 2. Остеоциты.
- 3. Центральный канал (гаверсов канал).

Клоптон Гаверс (1650-1702) — английский врач и анатом.

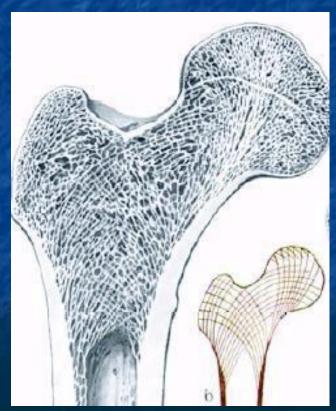


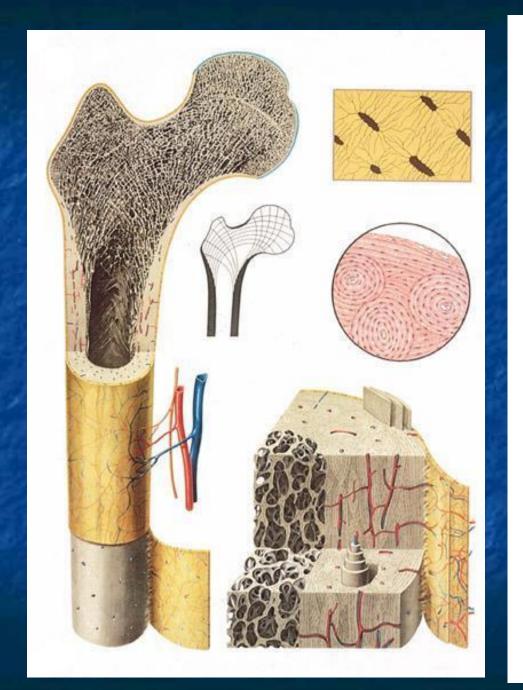

Строение остеона

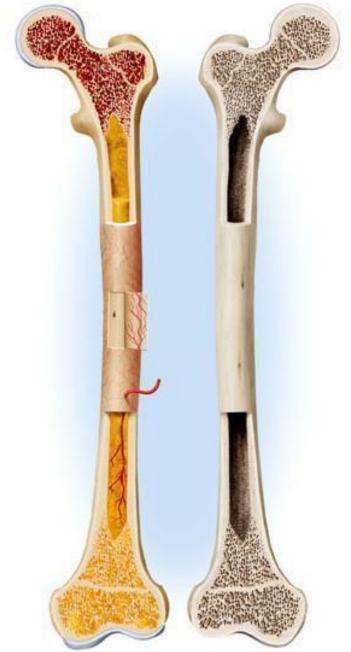
 1 – центральный канал (канал остеона);
 2 – пластинки остеона;
 3 – костная клетка (остеоцит) Остеоны образуют более крупные элементы кости – **костные балки** или перекладины.

Рыхло расположенные перекладины образуют ячеистые структуры (губчатые) — **губчатое** вещество кости (substantia spongiosa).

Spongia (греч.) – губка.






Если же костные балки плотно прилежат друг к другу, то образуется — компактное вещество кости (substantia compacta).

• Н.И. Пирогов

(1843). «Наружный вид каждой кости есть осуществленная идея назначения этой кости. При усиленной нагрузке имеет место качественное нарастание компактного слоя костей и параллельное изменение их микроструктуры»

Компактное Губчатое вещество

Там где требуется опора, превалирует компактное вещество, а где лёгкость, но вместе с тем и прочность — губчатое вещество.

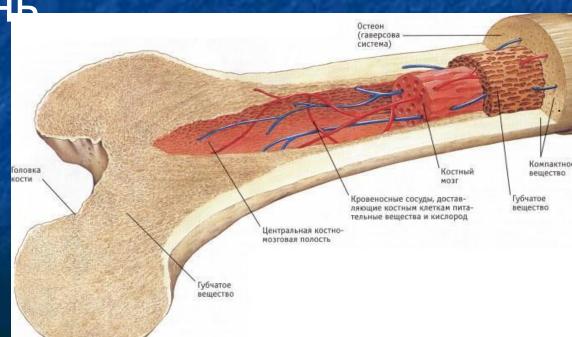
П.Ф. Лесгафт (1837-1909). «Костная система человеческого организма устроена таким образом, что при наибольшей легкости она представляет наибольшую крепость и всего лучше в состоянии противодействовать влиянию толчка и сотрясения. Рычаги, входящие в состав этой системы, у человека приноровлены больше к ловким и быстрым движениям, чем к проявлению большой силы».

Органические вещества, на долю которых приходится 30% от веса кости, другое составляющее – неорганические или минеральные вещества (60%) и 10% приходится на воду.

Органические вещества на 35% представлены коллагеном.

На основе этого белка вырастают кристаллы фосфата кальция, имеющие структуру гидроксиапатита.

Структура гидроксиапатита такова, что он может легко отдавать ионы в окружающую тканевую жидкость и легко поглощать их.


К примеру, на 1 г костной ткани приходится активной поверхности — 130-260 м2. Активная поверхность скелета в целом составляет около 2000 км2.

2. Костный мозг (красный и жёлтый).

Красный костный мозг обладает функцией кроветворения.

Жёлтый костный мозг — это

жировая ткань

3. Надкостница (periosteum)

Наружный слой — фиброзный, Внутренний, при лежащий к кости камбиальный, остеогенный

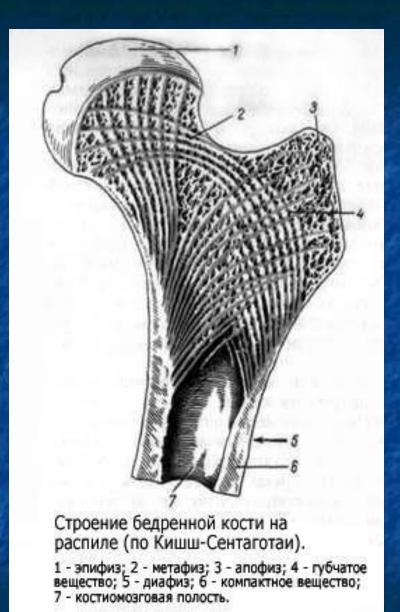
cambio (лат.) – менять

4. Хрящ.

5. Сосуды и нервы.

Классификация костей

Классификация по топографическому принципу:

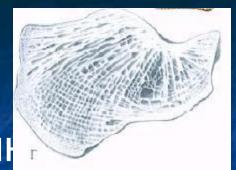

- 1. Осевой скелет (skeleton axiale)
 - 1). Скелет головы (череп).
 - 2). Скелет туловища (позвоночный столб, рёбра, грудина).
- 2. Добавочный скелет (skeleton appendiculare).
 - 1). Скелет поясов конечностей.
 - а). Пояс верхней конечности (лопатка, ключица).
 - б). Пояс нижней конечности (тазовая кость).
 - 2). Скелет свободных конечностей.
 - а). Верхняя конечность (плечевая кость, кости предплечья и кисти).
 - б). Нижняя конечность (бедренная кость, кости голени и стопы).

Классификация костей на основе их формы, строения, развития и функциональных особенностей:

1. Трубчатые кости.

- 1). Длинные (плечевая, бедренная, кости предплечья и голени).
- 2). Короткие (кости пястья, плюсны и фалангов пальцев кисти и стопы).

По развитию относятся к вторичным костям, развивающимся на основе хрящевой модели. По функции – обеспечивают опору и движение.



2. Губчатые кости.

- 1). Длинные (рёбра, грудина).
- 2). Короткие (запястья, предпли позвонки).
- 3). Сесамовидные.

По развитию относятся к вторичным костям (эндохондральный тип остеогенеза).

По функции – выполняют опорную, двигательную и защитную функции.

3. Плоские кости.

- 1) Кости черепа (крыши черепа). По развитию относятся к первичным костям (эндесмальный тип окостенения).
- 2). Кости поясов (тазовые, лопатки). По развитию являются вторичными костями.
- Кости черепа преимущественно выполняют защитную функцию, кости поясов конечностей опорную и защитную.

4. Смешанные кости. ключица, кости основания черепа.

5. Воздухоносные кости. клиновидная, верхняя челюсть и др.

Развитие костей

- В развитии костей можно выделить 3 стадии:
- 1. Соединительнотканная или перепончатая.
- 2. Хрящевая стадия.
- 3. Костная стадия, то есть процесс непосредственного окостенения.

Кости можно классифицировать по развитию:

- 1. Первичные кости. В своём развитии проходят 1 и 3 стадии.
- 2. **Вторичные кости**. В их развитии наблюдаются все три стадии.
- 3. Смешанные кости. В развитии различных частей этих костей отмечается разная стадийность процессов остеогенеза.

Развитие первичных костей или прямое окостенение (эндесмальный тип остеогенеза)

В центре перепончатой модели появляются молодые клетки мезенхимального происхождения — **остеобласты**. Они делятся и формируют «ядро окостенения», от которого лучеобразно отходят костные балки.

Так образуется **губчатое вещество**, снаружи слои соединительной ткани формируют надкостницу, ответственную за образование компактного вещества кости.

Таким образом развиваются покровные кости черепа (крыши), лицевые кости и ключица (смешанная кость).

Развитие вторичных костей или непрямое окостенение (хрящевой остеогенез)

Перепончатая стадия (4 неделя эмбриогенеза) — происходит появление перепончатой модели кости.

Хрящевая стадия (5 неделя эмбриогенеза) — возникает хрящевая модель кости. Кость в этот период построена за счёт **хондробластов** и покрыта надхрящницей. Её внутренний **камбиальный** слой богат сосудами и нервами.

Костная стадия. Изменения хрящевой модели кости начинают происходить на 8 неделе внутриутробного развития.