Системное познание

Диалектика и метафизика

Проблема учета связей исследуемой вещи с другими вещами занимает важное место в диалектическом методе познания, отличая его от метафизического. Метафизичность мышления многих ученыхестествоиспытателей, игнорировавших в своих исследованиях реальные взаимосвязи, существующие между объектами материального мира, породила в свое время немало трудностей в научном познании. Преодолеть эти трудности помог начавшийся в XIX в. переход от метафизики к диалектике, «...рассматривающей вещи не в их изолированности, а в их взаимной связи».

Система

■ это всегда некоторая целостность, представляющая собой совокупность элементов, функциональные свойства и возможные состояния которой обусловлены не только составом, строением и т. п. составляющих ее элементов, но и характером их взаимных связей.

Системный подход

Для изучения объекта как системы требуется и особый, системный подход к его познанию. Последний должен учитывать качественное своеобразие системы по отношению к своим элементам (т. е. что она — как целостность — обладает свойствами, которых нет у составляющих ее элементов).

 «Принцип системности требует разграничения внешней и внутренней сторон материальных систем, сущности и ее проявлений, обнаружения многоразличных сторон предмета, их единства, раскрытия формы и содержания, элементов и структуры, случайного и необходимого и т. п. Этот принцип направляет мышление на переход от явлений к их сущности, к познанию целостности системы, а также необходимых связей рассматриваемого предмета с окружающими его предметами процессами.

Принцип детерминизма

— это философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира. Основу данного учения составляет положение о существовании причинности, т. е. такой связи явлений, в которой одно явление (причина) при определенных условиях с необходимостью порождает другое явление (следствие). Еще в трудах Галилея, Бэкона, Гоббса, Декарта, Спинозы было обосновано положение о том, что при изучении природы надо искать действующие причины и что «истинное знание есть знание посредством причин» (Ф. Бэкон).

Принцип детерминизма

 Уже на уровне явлений детерминизм позволяет отграничить необходимые связи от случайных, существенные от несущественных, установить те или иные повторяемости, коррелятивные зависимости и т. п., т. е. осуществить продвижение мышления к сущности, к каузальным связям внутри сущности.

■ Познавательный процесс, идущий от следствий к причинам, от случайного к необходимому и существенному, имеет целью раскрытие закона. Закон же детерминирует явления, а потому познание закона объясняет явления и изменения, движения самого предмета.

Современный детерминизм

предполагает наличие разнообразных объективно существующих форм взаимосвязи явлений. Но все эти формы в конечном счете складываются на основе всеобще действующей причинности, вне которой не существует ни одно явление действительности

Научное наблюдение и описание

- Наблюдение есть чувственное (преимущественновизуальное) отражение предметов и явлений внешнего мира. «Наблюдение это целенаправленное изучение предметов, опирающееся в основном на такие чувственные способности человека, как ощущение, восприятие, представление;
- В ходе наблюдения мы получаем знание о внешних сторонах, свойствах и признаках рассматриваемого объекта». Это — исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.

Научное наблюдение

- (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:
- **целенаправленностью** (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей);
- планомерностью (наблюдение должно проводиться строго по плану, составленному исходя из задачи исследования);
- **активностью** (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения

Научные наблюдения всегда сопровождаются описанием объекта познания

- **Эмпирическое описание** это фиксация средствами естественного или искусственного языка сведений об объектах, данных в наблюдении.
- С помощью описания чувственная информация переводится на язык понятий, знаков, схем, рисунков, графиков и цифр, принимая тем самым форму, удобную для дальнейшей рациональной обработки

Эмпирический базис

 Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким-то свойствам, характеристикам, выясняют последовательность этапов их становления и развития.

- По способу проведения наблюдения могут быть непосредственными и опосредованными.
- При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека.
- Такого рода наблюдения дали немало полезного в истории науки. Известно, например, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадцати лет Тихо Браге с непревзойденной для невооруженного глаза точностью, явились эмпирической основой для открытия Кеплером его знаменитых законов.

чаще всего научное наблюдение бывает опосредованным, т. е. проводится с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.

 Наблюдения могут нередко играть важную эвристическую роль в научном познании. В процессе наблюдений могут быть открыты совершенно новые явления, позволяющие обосновать ту или иную научную гипотезу

Эксперимент

■ Эксперимент — более сложный метод эмпирического познания по сравнению с наблюдением. Он предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выявления и изучения тех или иных сторон, свойств, связей. При этом экспериментатор может преобразовывать исследуемый объект, создавать искусственные условия его изучения, вмешиваться в естественное течение процессов.

 По своему замыслу эксперимент всегда опосредован предварительным теоретическим знанием: он задумывается на основании соответствующих теоретических знаний и его целью зачастую является подтверждение или опровержение научной теории или гипотезы. Сами результаты эксперимента нуждаются в определенной теоретической интерпретации.

Экспериментально ориентированные ученые утверждают, что умно продуманный и «хитро», мастерски поставленный эксперимент выше теории:
 теория может быть напрочь опровергнута, а достоверно добытый опыт — нет!

Эксперимент

- обладает рядом важных, присущих только ему особенностей.
- Во-первых, эксперимент позволяет изучать объект в «очищенном» виде, т. е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования.
- Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия, т. е. изучаться при сверхнизких температурах, при чрезвычайно высоких давлениях или, наоборот, в вакууме, при огромных напряженностях электромагнитного поля и т. п. В таких искусственно созданных условиях удается обнаружить удивительные порой неожиданные свойства объектов и тем самым глубже постигать их сущность.

Эксперимент

- В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание. Как отмечал академик И. П. Павлов, «опыт как бы берет явления в свои руки и пускает в ход то одно, то другое и таким образом в искусственных, упрощенных комбинациях определяет истинную связь между явлениями. Иначе говоря, наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что хочет».
- В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия эксперимента, а соответственно и проводимые при этом наблюдения, измерения могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.

- В зависимости от характера проблем, решаемых в ходе экспериментов, последние обычно подразделяются на исследовательские и проверочные.
- Исследовательские эксперименты дают возможность обнаружить у объекта новые, неизвестные свойства. Результатом такого эксперимента могут быть выводы, не вытекающие из имевшихся знаний об объекте исследования. Примером могут служить эксперименты, поставленные в лаборатории Э. Резерфорда, которые привели к обнаружению ядра атома, а тем самым и к рождению ядерной физики

 Проверочные эксперименты служат для проверки, подтверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц (позитрона, нейтрино и др.) было вначале предсказано теоретически, и лишь позднее они были обнаружены экспериментальным путем.

- Эксперименты можно разделить на качественные и количественные.
- Качественные эксперименты носят поисковый характер и не приводят к получению каких-либо количественных соотношений. Они позволяют лишь выявить действие тех или иных факторов на изучаемое явление.
- Количественные эксперименты направлены на установление точных количественных зависимостей в исследуемом явлении. В реальной практике экспериментального исследования оба указанных типа экспериментов реализуются, как правило, в виде последовательных этапов развития познания.

Измерение и сравнение

 Измерение - это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств В основе операции измерения лежит сравнение объектов по каким-либо сходным свойствам или сторонам. Чтобы осуществить такое сравнение, необходимо иметь определенные единицы измерения, наличие которых дает возможность выразить изучаемые свойства со стороны их количественных характеристик.

Абстрагирование

 Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т. е. научным абстракциям. Получение этих абстракций связано со сложной абстрагирующей деятельностью мышления.

Идеализация

- Мыслительная деятельность исследователя в процессе научного познания включает в себя особый вид абстрагирования, который называют идеализацией.
- Идеализация представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований.

В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в механике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров.

Целесообразность использования идеализации

определяется следующими обстоятельствами:

Во-первых, «идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности математического, анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию для описания свойств и поведения этих реальных объектов. Последнее, в сущности, и удостоверяет плодотворность идеализации, отличает ее от бесплодной фантазии».

Целесообразность использования идеализации

- Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.
- В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. При этом правильный выбор допустимости подобной идеализации играет очень большую роль.

Формализация

- Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков).
- Этот прием заключается в построении абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности.

- Ярким примером формализации являются широко используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.

Аксиоматический метод

■ При аксиоматическом построении теоретического знания сначала задается набор исходных положений, не требующих доказательства (по крайней мере, в рамках данной системы знания). Эти положения называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную теорию.

- Чтобы задать аксиоматической систему, требуется некоторый язык. В этой связи широко используют символы (значки), а не громоздкие словесные выражения. Замена разговорного языка логическими и математическими символами, как было указано выше, называется формализацией.
- Если формализация имеет место, то аксиоматическая система является формальной, а положения системы приобретают характер формул.
- Получаемые в результате вывода формулы называются теоремами, а используемые при этом аргументы доказательствами теорем. Такова считающаяся чуть ли не общеизвестной структура аксиоматического метода.

Метод гипотезы

В методологии термин «гипотеза» используется в двух смыслах:

- как форма существования знания,
 характеризующаяся проблематичностью,
 недостоверностью, нуждаемостью в доказательстве,
- и как метод формирования и обоснования объяснительных предложений, ведущий к установлению законов, принципов, теорий.

Гипотеза в первом смысле слова включается в метод гипотезы, но может употребляться и вне связи с ней.

- Лучше всего представление о методе гипотезы дает ознакомление с его структурой.
- Первой стадией метода гипотезы является ознакомление с эмпирическим материалом, подлежащим теоретическому объяснению.
 Первоначально этому материалу стараются дать объяснение с помощью уже существующих в науке законов и теорий. Если таковые отсутствуют, ученый переходит ко
- второй стадии выдвижению догадки или предположения о причинах и закономерностях данных явлений. При этом он старается пользоваться различными приемами исследования: индуктивным наведением, аналогией, моделированием и др. Вполне допустимо, что на этой стадии выдвигается несколько объяснительных предположений, несовместимых друг с другом.

- Третья стадия есть стадия оценки серьезности предположения и отбора из множества догадок наиболее вероятной. Гипотеза проверяется прежде всего на логическую непротиворечивость, особенно если она имеет сложную форму и разворачивается в систему предположений. Далее гипотеза проверяется на совместимость с фундаментальными принципами данной науки.
- На четвертой стадии происходит разворачивание выдвинутого предположения и дедуктивное выведение из него эмпирически проверяемых следствий. На этой стадии возможна частичная переработка гипотезы, введение в нее с помощью мысленных экспериментов уточняющих деталей.

На пятой стадии проводится экспериментальная проверка выведенных из гипотезы следствий. Гипотеза или получает эмпирическое подтверждение, или опровергается в результате экспериментальной проверки. Однако эмпирическое подтверждение следствий из гипотезы не гарантирует ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Все попытки построить эффективную логику подтверждения и опровержения теоретических объяснительных гипотез пока не увенчались успехом. Статус объясняющего закона, принципа или теории получает лучшая из предложенных гипотез. От такой гипотезы, как правило, требуется максимальная объяснительная и предсказательная сила.

Анализ и синтез

- Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т. п.
- Анализ необходимый этап в познании объекта. С древнейших времен анализ применялся, например, для разложения на составляющие некоторых веществ.

Синтез

■ Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве. Осуществить этот второй этап в процессе познания — перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого возможно только в том случае, если метод анализа дополняется другим методом синтезом

 Анализ фиксирует в основном то специфическое, что отличает части друг от друга. Синтез же вскрывает то существенно общее, что связывает части в единое целое. Анализ, предусматривающий осуществление синтеза, своим центральным ядром имеет выделение существенного. Тогда и целое выглядит не так, как при «первом знакомстве» с ним разума, а значительно глубже, содержательнее.

Индукция и дедукция

- Индукция (от лат. inductio наведение, побуждение) есть формально-логическое умозаключение, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частного к общему.
- Индукция широко применяется в научном познании. Обнаруживая сходные признаки, свойства у многих объектов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса. Наряду с другими методами познания, индуктивный метод сыграл важную роль в открытии некоторых законов природы (всемирного тяготения, атмосферного давления, теплового расширения тел и Др.).

- Индукция, используемая в научном познании (научная индукция), может реализовываться в виде следующих методов:
- 1. Метод единственного сходства (во всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор, все другие различны; следовательно, этот единственный сходный фактор есть причина данного явления).
- 2. Метод единственного различия (если обстоятельства возникновения какого-то явления и обстоятельства, при которых оно не возникает, почти во всем сходны и различаются лишь одним фактором, присутствующим только в первом случае, то можно сделать вывод, что этот фактор и есть причина данного явления).

- 3. Соединенный метод сходства и различия (представляет собой комбинацию двух вышеуказанных методов).
- 4. Метод сопутствующих изменений (если определенные изменения одного явления всякий раз влекут за собой некоторые изменения в другом явлении, то отсюда вытекает вывод о причинной связи этих явлений).
- 5. Метод остатков (если сложное явление вызывается многофакторной причиной, причем некоторые из этих факторов известны как причина какой-то части данного явления, то отсюда следует вывод: причина другой части явления остальные факторы, входящие в общую причину этого явления).

Дедукция

- Дедукция (от лат. deductio выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному.
- Большое познавательное значение дедукции проявляется в том случае, когда в качестве общей посылки выступает не просто индуктивное обобщение, а какое-то гипотетическое предположение, например новая научная идея. В этом случае дедукция является отправной точкой зарождения новой теоретической системы. Созданное таким путем теоретическое знание предопределяет дальнейший ход эмпирических исследований и направляет построение новых индуктивных обобщений

Аналогия и моделирование

■ Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда — прототипом, образцом и т. д.). Таким образом, модель всегда выступает как аналогия, т. е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).

 «...Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект оригинал»

Виды моделирования

- В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.
- 1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся различные мысленные представления в форме тех или иных воображаемых моделей. Следует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно воспринимаемых физических моделей.
- 2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называемых «натуральных условиях».

- 3. Символическое (знаковое) моделирование. Оно связано с условно- знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т. п.)
- Важной разновидностью символического моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегродифференциальными, алгебраическими) и их системами.
- 4. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов