
Промышленные установки АТ, ВТ, АВТ

Работа атмосферной и вакуумной колонн

Варианты подачи орошения в сложную ректификационную колонну

1 – ректификационная колонна; 2, 8, 10, 13, 14 – насосы; 3 – теплообменники; 4, 6 – водяные холодильники; 5 – воздушный конденсатор – холодильник; 7 – приемник орошения и водоотделитель; 9, 11, 12 – отпарные выносные колонны (стриппинги).

Схема вакуумной колонны

1 – корпус; 2 – ректификационные тарелки; 3 – отбойник; 4 – конденсатор – холодильник; 5 – отстойник; 6 – холодильник.

Линии: І – мазут; ІІ - водяной пар; ІІІ - несконденсировавшиеся газы; ІV - вода; V - циркуляционное орошение; VІ - боковой продукт; VІІ - гудрон.

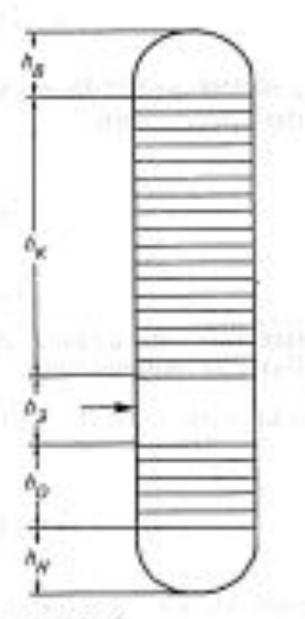
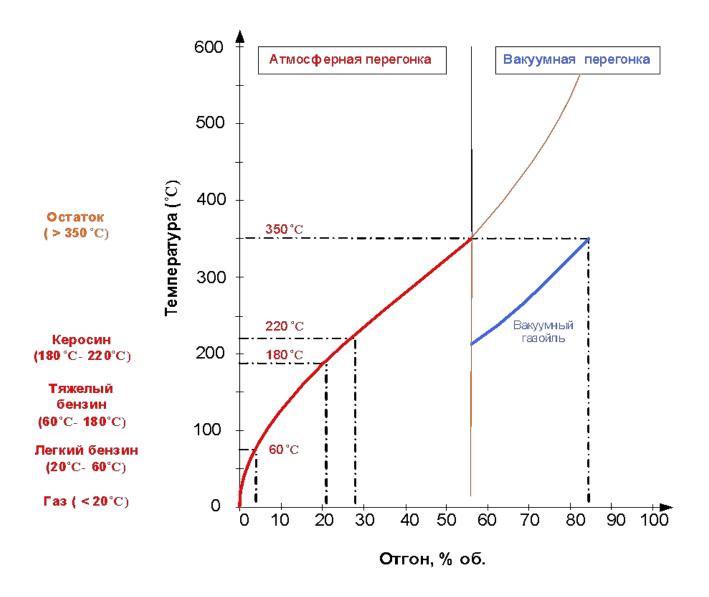



Рис. 7.19. Схема колонны

$$H_{\rm K} = h_{\rm K} + h_{\rm S} + h_{\rm O} + h_{\rm B} + h_{\rm H}.$$

Кривые ИТК нефти

Высота h_н принимается из условия обеспечения 5—10-минутного запаса жидкого остатка и рассчитывается по уравнению

$$h_e = \frac{G_{\text{per}} \cdot 10}{F \rho_{\text{out}}^{I_0} \cdot 60},$$

где $G_{\text{ост}}$ — расход жидкого остатка перегонки, кг/ч; $\rho_{\text{вет}}^{h_1}$ — плотность остатка при температуре низа колонны I_n , кг/м³.

$$F = V_{\text{max}}/w_{\text{pon}}; \qquad (7.20)$$

откуда
$$D_{\kappa} = \sqrt{4F/\pi}$$
. (7.21)

Секундный объем паров (м³/с) определяется с учетом рабочих условий в данном сечении — температуры и давления по уравнению

$$V = 2,28 \cdot 10^{-6} \Sigma n_i \cdot \frac{T}{P}$$
, (7.22)

где Σn_i — сумма молей компонентов; $\Sigma n_i = \frac{G_1}{M_1} + \frac{G_2}{M_2} + ... + \frac{G_{8.8.}}{18}$ (G_1 , G_2 ... — расход по балансу; M_1 , M_2 ... — молекулирная масса продуктов; $G_{8.8.}$ — расход водяного пара (в случае его подачи в колонну); T, P — температура (в K) и давление (в $M\Pi a$) в данном сечении.

Допустимую скорость паров (в м/с) в рассчитываемом сечении определяют по уравнению

$$w_{\text{gas}} = 8,47 \cdot 10^{-3} \, \text{m} \cdot C_{\text{max}} \sqrt{\frac{(\rho_{\text{M}} - \rho_{\text{m}})}{\rho_{\text{o}}}},$$
 (7.23)

гле ρ_{∞} и ρ_0 — плотности жидкости и паров в рабочих условиях данного сечения; нь, $C_{\rm ran}$ — коэффициенты.

Плотность пара определяют по формуле

$$\rho_{tt} = \Sigma G/3600 \cdot V_{max} \qquad (7.24)$$

С возрастанием давления в колонне значение w_{доп} снижается вследствие увеличения плотности паровой фазы и составляет:

- для вакуумных колонн 3-3,5 м/с
- для атмосферных колонн 1,5-2 м/с
- для колонн под давлением 0,5-0,8 м/с

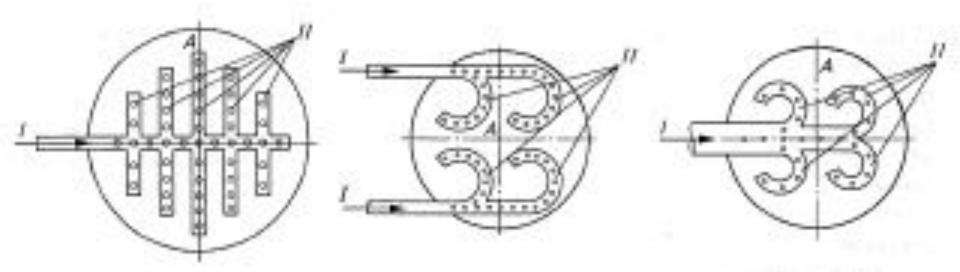


Рис. 8.11. Варианты вводов парожидкостных потоков в зону питания вакуумных колони:

A — сечение зоны питания вакуумных колони; I — общий поток питания; II — нарожидкостиме потоки в коллекторах-расправлителих

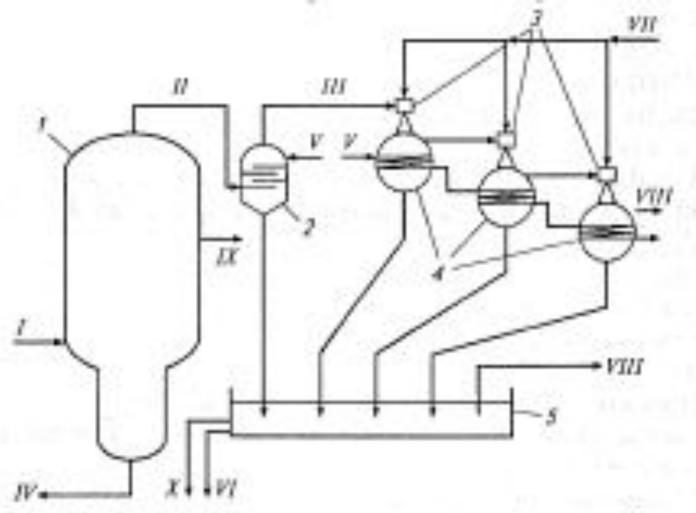


Рис. 8.12. Схема создания накуума с подачей воды в барометрический конденсатор:

I — колонип; 2 — барометрический конденситор; 3 — змекторы;
 4 — конденсаторы водяного пара; 5 — барометрический ящик;
 I — сырье-мазут; II — несконденсированные пары и газы; III — вакуумные газы; IV — гудрон; V — вода; VI — вода на очистку;
 VII — водяной пар в эмекторы; VIII — газ; IX — дистилляты;
 X — утлеводородный конденсат

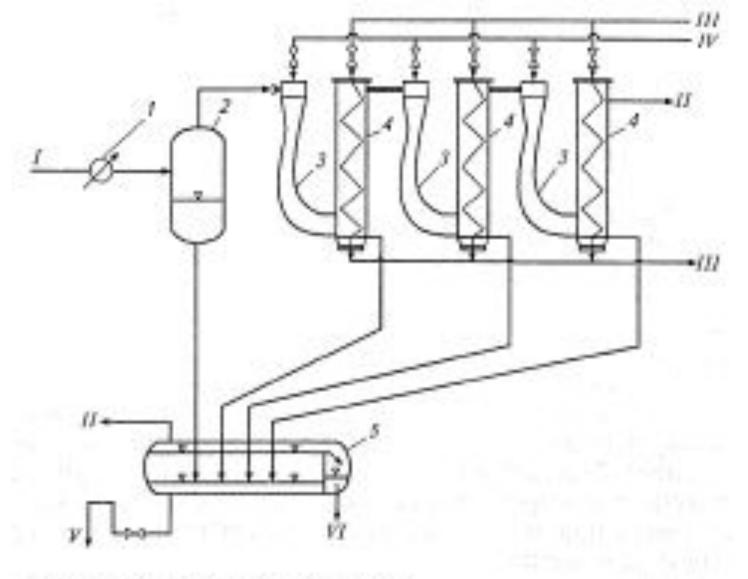
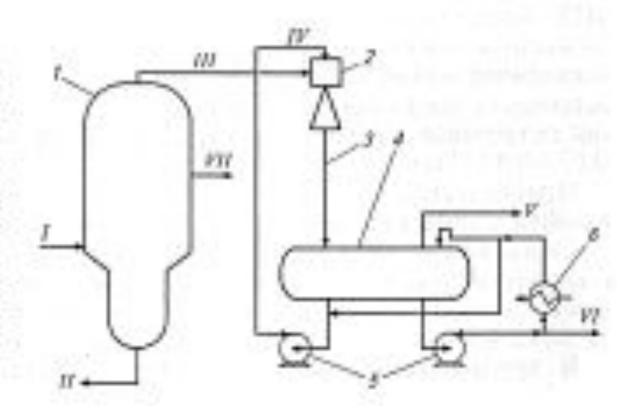


Рис. 8.13. Система создания вакуума:

7 — холодильник-конденсатор;
 2 — викуумный сепаратор;
 3 — зокекторы;


4 — конденсаторы; 5 — отстойник;

I — несконденсированные пары и газы; II — газ; III — вода; IV — воданой конденсат; VI — газойль

Рис. 8.14. Схеми одноступентатой системы создания вакууна с жилкостным эксктором:

7— вакуумная колония; 2— жидкостной золоктор; 3— вертикальный стояк; 4— резедлительное емереть; 3— нескем; 6— золовильник;

I — сырые-видут; // — гупрон; I// — несколяденсированные пары и галы; JV — циркулирующий нефтепродукт; V — гал; VI — избыток нефтепродукта; V// — дистиковты.

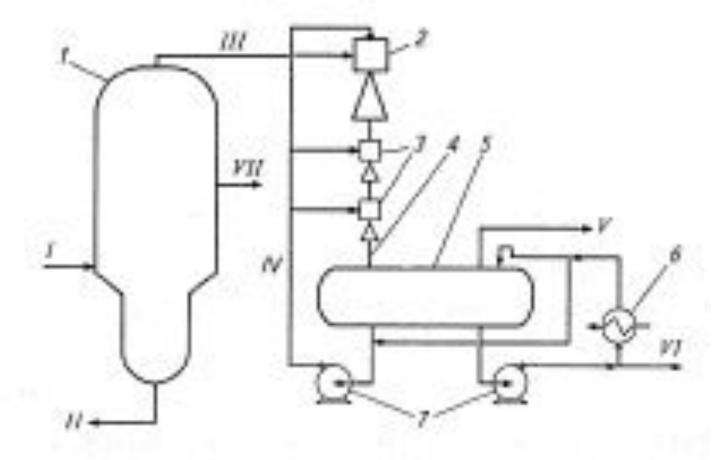
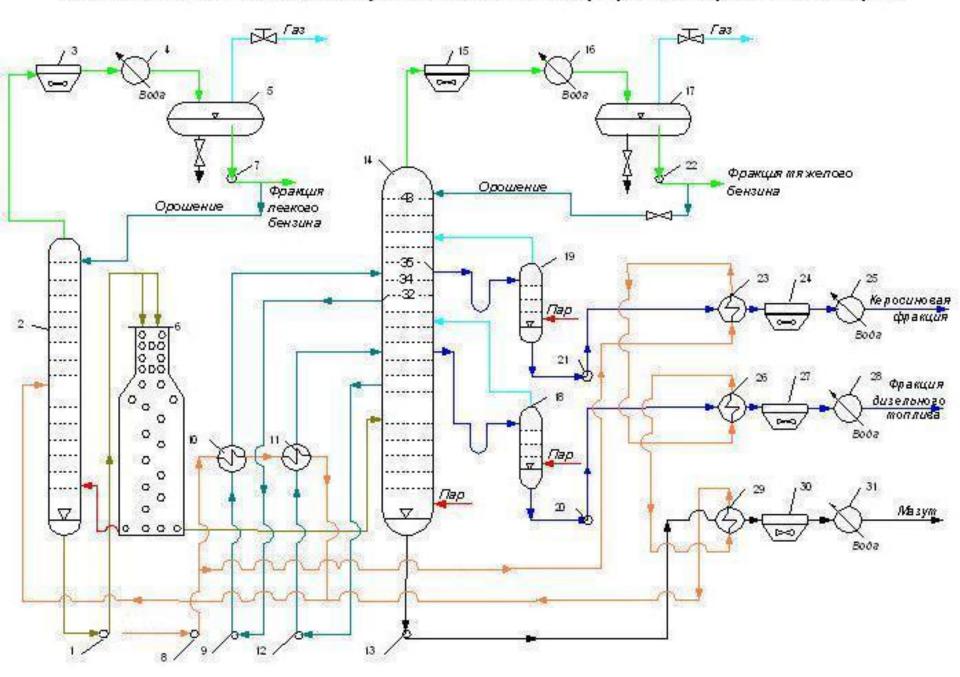
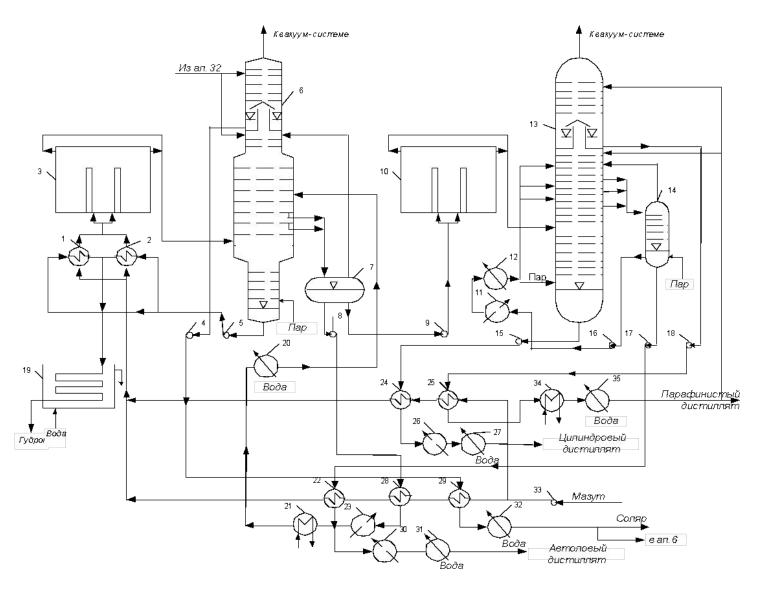
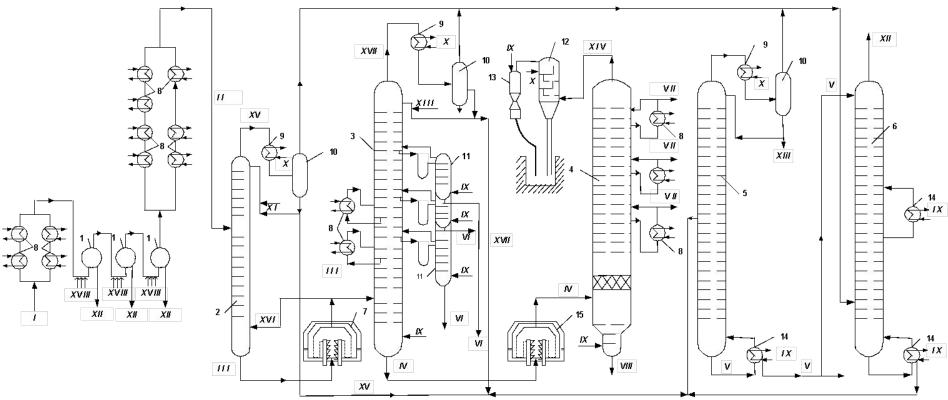



Рис. 8.15. Схема многоступенчатой системы создания вакуума с жидкостными эжекторами:


1 — колонна; 2 — жидкостной эжектор; 3 — промежуточные эжекторы; 4 — стояк; 5 — разделительная омкость; 6 — холонильник; 7 — насосы;

I— сырье-мазут; II— гудрон; III— несконденсированные пары и газы; IV— ширкулирующий нефтепродукт; V— газ; VI— избыток нефтепродукта; VII— дистиляты


Технологическая схема установки атмосферной перегонки нефти

Технологическая схема двухступенчатой установки вакуумной перегонки мазута

1, 2, 22, 24, 25, 28, 29 - теплообменники; 3, 10 – трубчатые печи; 4, 5, 8, 9, 15-17, 18, 33 – насосы; 6, 13 – вакуумные колонны; 7 – вакуумный приемник; 11, 23, 26, 30 – котлы – утилизаторы; 12, 19, 20, 27, 31, 32, 35 – холодильники; 14 – отпарная колонна; 21, 34 – подогреватели.

Принципиальная схема установки АВТ с блоком вторичной перегонки бензиновых фракций

- 1 электродегидратор, 2 отбензинивающая колонна; 3 основная атмосферная колонна; 4 вакуумная колонна; 5 стабилизационная колонна;
 - 6 абсорбер; 7 атмосферная печь; 8 теплообменники; 9 конденсаторы-холодильники; 10 газосепараторы; 11 отпарные колонны;
- 12 барометрический конденсатор; 13 эжектор; 14 паровые подогреватели; 15 вакуумная печь. Линии: І сырая нефть, ІІ обезвоженная и обессоленная нефть, ІІІ отбензиненная нефть; ІV мазут; V стабильный бензин; VI боковые продукты атмосферной колонны; VII боковые продукты вакуумной колонны; VIII гудрон; ІХ водяной пар; Х оборотная вода; ХІ аммиачная вода;
- XII сухой газ; XIII сжиженный газ; XIV несконденсировавшиеся пары и газы; XV легкий бензин; XVI горячая струя; XVII тяжелый бензин; XVIII вода, деэмульгатор и щелочь; XIX дренаж воды и солей.

Таблица 8.4. Материальный баланс установки ЭЛОУ-АВТ

	% (мас.) на нефть	т/сут		тыс. т/год
Взято:	68			Chartely.
нестабильная нефть вода в нефти	100 2,0	17640,0 3,5		6000,0 12,0
Всего	102,0	17643,5	1000	6012,0
Получено: газ фракция, °C:	1,50	259,5	1, 14. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	90
н.к. — 62 62—140 140—180	2,53 9,27 5,90	477,6 1603,5 1020,6	0.6	152 557 354
180—220 220—280 280—350 350—500	7,10 9,30 10,70 21,00	1220,1 1608,7 1890,8 3682,5		425 559 641 1260
гудрон (> 500 °C) потери	32,00 0,70	5535,2 121,1		1920 42
вода (остаточная)	0,20	34,6		12
вода и соли	1,80	311,4	. W.	108
Bcero	102,0	17643,5	1,149	6012,0

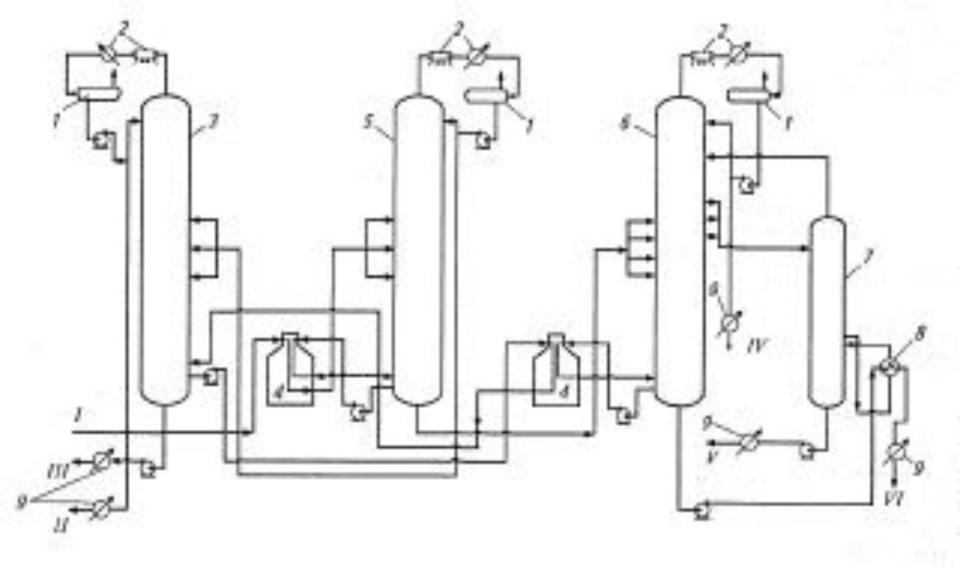


Рис. 8.16. Схема блока вторичной перегонки бежзина:

I — емкости-сепараторы верхнего продукта; 2 — конденсаторы-холодильники; 3, 5, 6 — фракционирующие колонии; 4 — печи; 7 — отпарная колонии; 8 — кипитильник; 9 — колодильники; I — широкая бензиновая фракции; Π — н.к. — 62 °C; III — 62—85 °C; IV — 85—120 °C; V — 120—140 °C; VI — 140—180 °C

Для сернистой нефти типа ромашкинской выход фракций приведен ниже, % (мас.) на бензин (A), на нефть (Б):

	Α.	Б
Головная (н.к 62°C)	10,6	2,0
Бензольная (62-85 °C)	14,4	2,6
Толуольная (85—120°С)	23,4	4,2
Ксилольная (120-140 °C)	17.6	3,2
Остаток (140-180 °С)	34,0	10,5
Beero	100,0	22,5

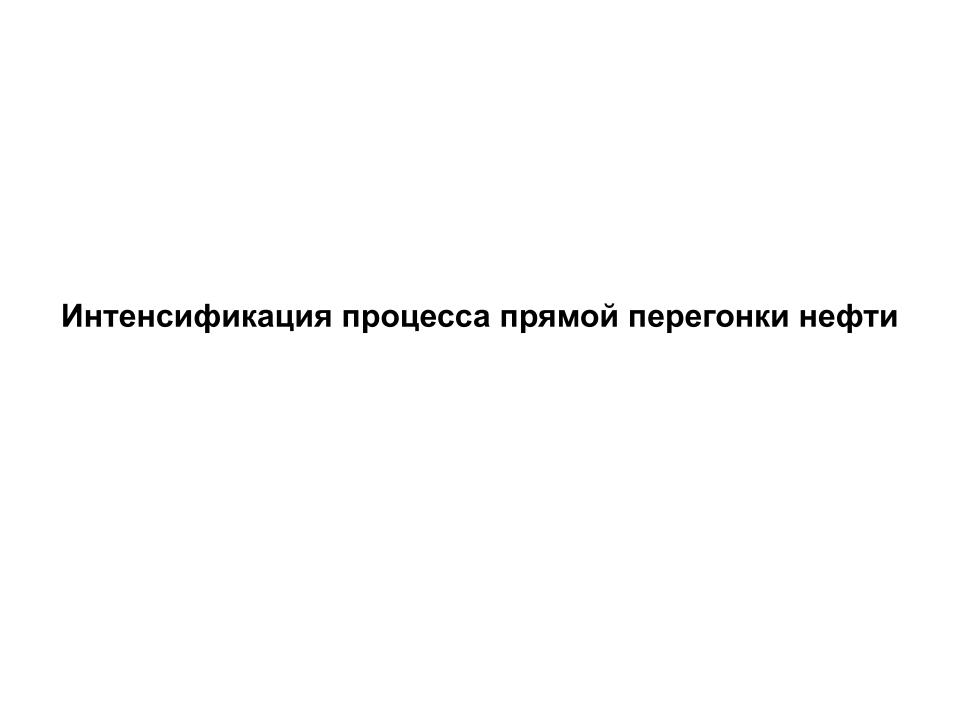
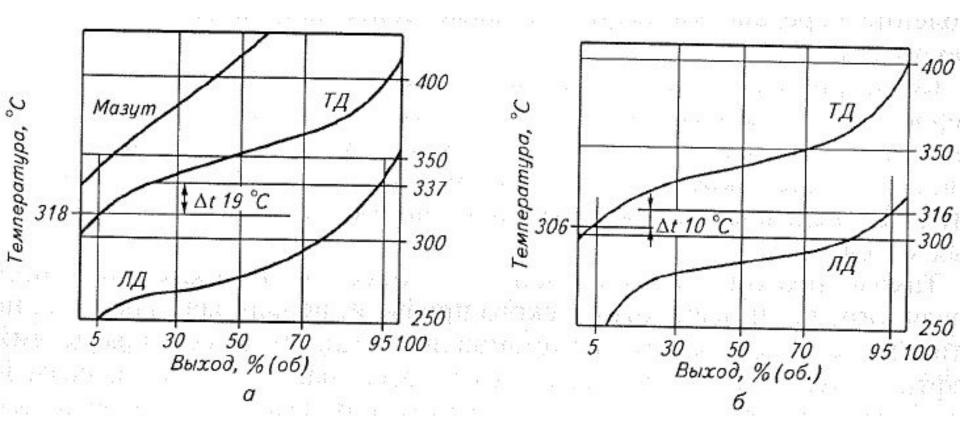

Характеристика сырья и продуктов блока вторичной перегонки фракций приведена в табл. 8.2.

Таблица 8.2. Характеристика сырыя и продуктов блока вторичной перегонки бензина

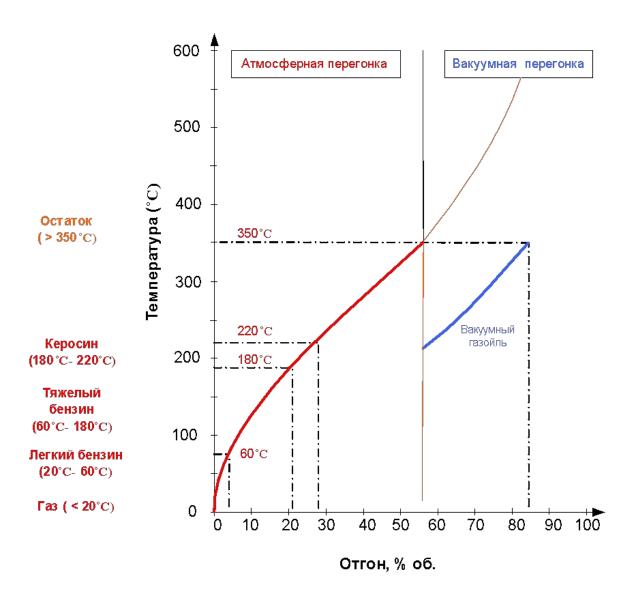
diameter of	Плотность при Солержание серы, № (мас.)		Октинопое	Фракционный состав, перегонястся, "С		
Фрекция, "С			HACID (HOTOP:	10 %	50 %	90 %
			Сырье			
н.к. — 180	733	0,08	45,5	85	121	162
			Продукты			
н.к. — 62	646	0,007	70		-	400
62-85	695	0,02	53	70	72	79
85-120	723	0,04	48	93	103	114
120-140	744	0,07	40	124	127	132
140-180	766	0,14	30	144	155	175

Таблица 8.3. Параметры работы колони вторичной перегонки

	Колонны (по рис. 8.16)				
	3	5	6	7	
Давление наверку колон- ны, МПа	0,3	0,2	0,2	1,2	
Гемпература, °С: верха низа	104 170	78 122	105 168	130	
Диаметр, мм Число тарелок, шт.	3 60	2 60	3 60	1,2	
Кратность орошения Расстояние между тарелками, мм	2:1 500	2,5:1 500	1,5:1 500	500	


Регуляторные насадки (разделительные устройства в колоннах)

Металлическая Пластиковая


Атмосферная перегонка

Кривые разгонки продуктов, полученных в обычной тарельчатой (а) и насадочной (б) колоннах.

0 34 50 5 E 0 E	Вариант а	Вариант б
Температура, °С:	9	200
выкипания 95 % ЛД	337	316
выкипания 5 % ТД	337 318	306
к.к. ТД	420	400
Наложение, ∆t, °C	-19	-10
Температура застывания, °С:		7 V. N. M.
ЛД	-5	8
TД and and an area of the second of the sec	+20	+10

Кривые ИТК нефти

Вакуумная перегонка

Таблица 8.6. Технологические параметры работы колонны

Продукт	До реконструкции	После реконструкции		
Давление, кПа (мм рт.ст.):				
вверху колонны	5,85 (44)	4,25 (32)		
в зоне ввода сырья	10,60 (80)	5,98 (45)		
Перепад давления, кПа (мм рт.ст.)	4,75 (36)	1,73 (13)		
Температура, °С:		3 Kar 3 Ta-120 (244 1982 19		
вверху колонны	68	64		
в зоне ввода сырья	371	398		
внизу колонны	324	353		
на выходе из печи	392	412		
Перепад температур на трансферной ли	инии, °C 21	14		

Таблица 8.7. Выход продуктов вакуумной колонны (в пересчете на нефть)

Продукт	До реконструкции	После реконструкции		
Вакуумный дистиллят, % (мас.):	1940 (1950)			
легкий	7,40	7,23		
тяжелый	20,59	28,53		
Затемненный продукт, % (мас.)	3,51	2,42		
Гудрон, % (мас.)	20,87	14,19		

Характеристика гудрона до (1) и после (2) реконструкции вакуумного блока установки АВТ

Показатели	Гудрон	
	1	2
Плотность при 20 °C, кг/м ³	~960	1020
Вязкость условная при 80 °C, с	22,3-24	170
Температура вспышки, °С	160	220-240
Содержание фракций до 500 °C, % мас.	30	17

Регулирование фазового перехода жидкость - пар

Уравнение Кельвина-Томсона связывает парциальное давление над плоской и искривленной поверхностью, в частности, с радиусом капли r, характеризующим степень кривизны (чем меньше r, тем больше кривизна поверхности):

$$RT \ln \frac{p_r}{p_0} = \frac{2\sigma V}{r},\tag{8.3}$$

где R — универсальная газовая постоянная, T — абсолютная температура, V — парциальный молярный объем, σ — поверхностное натяжение, p_r и p_0 — парциальное давление паров над каплей радиусом r и плоской поверхностью соответственно.

Например, для капли воды $r=10^{-5}$ см, $\sigma=73$ дин/см, $\overline{V}=18$ см 3 /моль, $p_r/p_0=0.01$, т. е. давление увеличивается на 1 %. Для капли с $r=10^{-6}$ см, $p_r/p_0=1.11$, т. е. на 11 %.

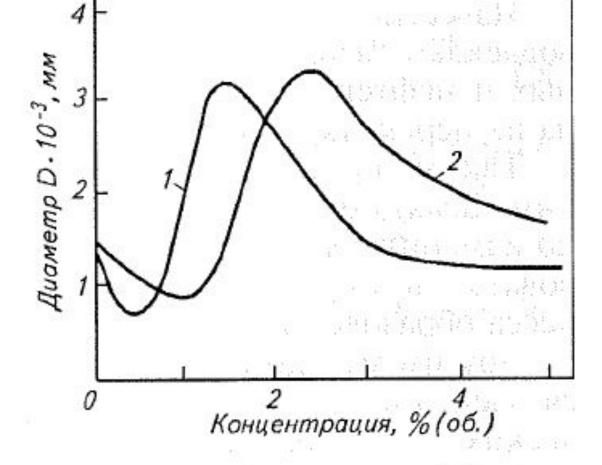


Рис. 8.20. Зависимость диаметра *D* отрывного пузырька пара от концентрации спирта при кипении бинарных смесей (по результатам статистической обработки кинограмм):

I — вода — изоамиловый спирт; 2 — вода — H-бутиловый спирт

Таблица 8.8. Фактор устойчивости сырья Ф и выход продуктов перегонки западносибирской нефти в присутствии деэмульгатора (прогалита)*

Концен- трация прогалита, Ф _в % (мас.)			Выход фра	кций, % (мас.)	.)		
	до 180 °C	180—240 °C	240-350 °C	Σ до 350 °C	350—500 °C	ост. > 500 °С	
0	0,85	17,1	11,9	13,5	42,5	25,1	32,4
$5 \cdot 10^{-2}$	0,93	17,3	11,6	14,8	43,7	24,2	32,1
$5 \cdot 10^{-3}$	0,96	17,1	11,7	17,4	46,2	21,4	32,4
5 · 10-4	0,88	17,2	11,0	16,6	44,8	22,3	32,9

^{*}Данные Н. К. Матвеевой, Т. П. Клоковой, О. Ф. Глаголевой.