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Figure 6,3 Natural jon currents generated by growing plant cells and organs. Current
enters at the absorptive pole and exits proximal to the growing tip or at the photosynthetic
pole. When roots are gravitropically stimulated by being tuened on their sides (d), an
outward current develops on the upper side of the tip within 3 min. (Weisenseel & Kicherer
1981; Behrens ef al. 1582) Z
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400 mOsmol

116G, 13, Redistribution of charged molecules within the insect nurse cell (grey)Voocyte (yellow) syneytium. A: ovarian follicle of the moth
Cecropia. Seven nurse cells are connected to the oocyte via a cytoplasmic bridge. B: ovarian follicle of the fruit fly Drosophila. Only 9 of the 15 nurse
cells are shown. In A and B, the electrical potential of the oocyte is positive with respect to the follicle cells, Positively charged molecules injected
into the oocyte move into the nurse cells as a result of the electrie fleld across the cytoplasmic bridge, but when injected into the nurse cells, the
same molecules did not move into the vocyte. Conversely, negatively charged molecules injected into the nurse cells move into the oocyte, but when
injected into the ooeyte they did not move into the nurse cells. The asymmetric distribution is a function of the potential difference in the two
compartments. C; increasing the osmolarity of the extracellular medium from 250 moesM (physiological) to 400 mosM reverses the electrical potential
of the Drosophila follicle. Two-dimensional gel electrophoresis of soluble proteins isolated from the eytoplasm nurse cells and oocytes indicates
that charged endogenous proteing respond to the change in electrical potential in a manner consistent with their redistribution by the endogenous
electrical grindient; that s, the direction of movement is opposite to that in B, (Based on Refs, 39, 200, 210.)



A Functional apical-basal polarity B Structural apical-basal polarity
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Figure 1. Functional and structural organization of polarized epithelia. (A) Functional apical-basal polarity.
Physiological studies of transporting epithelia across the phyla (eg., crab gill and mammalian kidney
nephron) has revealed a remarkable conservation in the distribution of ion channels (Cl channel, K channel )
transporters (Na,K,2Cl transporter) and pumps (Na/K-ATPase) between the apical and basolateral plasma
membrane domains. The polarized distribution of these proteins generates an apical-basal sodium gradient
that is used to move other ions and solutes across the epithelium. (Redrawn and adapted from Cereijido
et al. 2004.) (B) Structural apical-basal polarity. Polarized epithelial cells have a distinctive apical —basal
polarity in the orientation of cell -cell and cell-extracellular matrix (ECM). Major structures of these cells
are also organized in the apical-basal axis: The organization of plasma membrane domains (apical and
basolateral ), junctional complexes (APC, apical junctional complex), the centrosome (basal body),
microtubules and primary cilium, and the secretory pathway (Golgi). For details, see text.
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Song et al. (183).
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NATEPATIbHAA NMOJNTAPUN3ALUMNA 3UTOThI C.elegans

A C. elegans zygote (one-cell embryo): central view

- N>

B Myosin organization: cortical view

Myosin filaments Myesin bai Coentractile ring

Fig. 1. PAR protein and myosin asymmetry during C. elegans zygote polarization. (A) Central view of a C. elegans zygote showing PAR-2
(red) and PAR-2 (green) domains during polarization. Anterior is to the left. Microtubules (black lines) are shown emanating from centrosomes
(magenta). The centrosome triggers anterior movement of the cortical PAR-2 domain during the establishment phase, the period during which the
PAR domains form. The cortical PAR-2 domain fills in the posterior cortex devoid of PAR-2. The border between the PAR-2 and PAR-2 domains
stabilizes and remains in the middle of the zygote during the maintenance phase. The domains are adjusted to align with the cytokinesis furrow
during the domain correction phase. (B) Cortical view of myosin (blue) organization during polarization at the same stages as shown in A. Anterior
is to the left. Myosin foci and filaments are present in a contractile network at the onset of polarization, and during the establishment phase the
network contracts asymmetrically to the anterior. The myosin network breaks down to form smaller puncta during the maintenance phase. During
the domain comrection phase, larger puncta of myosin form in the nascent contractile ring and anterior region. Myosin organization is based on
Munro et al. (Munro et al., 2004) and Werner et al. (Werner et al., 2007).
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Maodes of PAR localization and transport in different cell types. (a) In C. elegans, actomyosin-based cortical flows transport Par-3/Par-6/aPKC
away from the sperm MTOC, allowing Par-1 and Par-2 to associate with the posterior cortex. (b) In vertebrate oocytes, Par-3/Par-6/aPKC forms acap
over tha meiotic spindle in an actomyosin-depandent fashion. () In hippocampal neurons, Par-3/Par-6/aPKC accumulates at the tip of the axon
through an association with Kif-3a (Kinasin ll) and APC. (d) In cultured mammaBan epithelial cells, nascent cadhann-based junctional structures
move in an actomyosin-dependent way towards the edges of cell contacts and towards the apical suface, where they recruit Par-3/Par-6&/aPKC,
ather directly or through intermediates ke Jam-1 or the necting. (e) In Drosophila embryos dunng callulanzation, Par-3 accumulates at the
apicdateral boundary, in part through dynein-based transport towards the apically localized centrosomes, although other machanisms may

also be involved. In all these cases, cross-ragulatory interactions {see Figure 2) will shape spatial distnbutions of Par-1, Par-2 and Lgl in response
to active redstibution of Par-3/Par-6/aPKC.
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Figure 3. PCP components regulate contact inhibition of locomotion in migrating neural crest cells. Schematic
of neural crest eell migration showing cells breaking away from the epithelial sheet leading edge, migrating
toward each other, and forming an interface, which then collapses and prompts cells to migrate in opposite
directions. Initially, PCP components have uniform distributions, but then relocalize to the site of cell —cell
contact. PCP components are required to arrest and then alter the migration path, possibly through

activation of RhoA.
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Feedback between PM tension and cellular processes
T=Tm+ v; with Tm = k (AA/A)

Processes that Processes that
lower membrane tension increase membrane tension
and occur when and occur when
itistoo high itistoo low
Exocytosis Endocytosis
{increasing ‘A’ O — 2 S : O - 2 S (decreasing ‘A’
and affecting 'k’) and affecting 'k’)

Caveolaedissassembly e ¥ Caveolae assembly
{increasing ‘A’) J J < {decreasing ‘A’)

Stalling of the

Increasein
actin network ‘__‘ actin polimerization

{increasing ‘A")

Increasesin Decreasesin
contractility S contractility
<A —~—— 2 P
(decrease in ‘A’) ] {increase in ‘A’)

Figure 1. Feedback batwean plasmamembrane [PM] tension and cellular processes. Examples of cellular processes that occur when PM tension is1oo high and that leadto
its reduction (left] or that occur when PM tension i 100 low and lead to its increase |right) - vesicle trafficking, caveola formation, actin polymerization, and changes in
myosin. In brackets we comment on the parameters of Equations [I] and [I] in Box 2 that are predicted to change in each of these processes.
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