СУПЕРИОННОЕ СОСТОЯНИЕ ИНТЕРФАЗ В СИСТЕМАХ ПРЯМОГОКОНТАКТА ОДНОВАЛЕНТНЫЙ МЕТАЛЛ – ПОЛУПРОВОДНИК **р**-ТИПА

Михайлова А.М.¹, Сигейкин Г.И.², Симаков В.В.³, Ефанова В.В.¹

ФГОУ ВНО «Саратовский государственный технический университет имени Гагарина Ю.А.», г. Саратов, Россия

² Учреждение Российской академии наук Межведомственный центр аналитических исследований в области физики, химии и биологии при Президиуме РАН, г. Москва, Россия

ГБОУ ВПО «Саратовский государственный аграрный университет имени Н.И. Вавилова», г. Саратов, Россия

Цель работы:

Установление закономерностей механизма и кинетики ионного переноса в твердофазных электрохимических системах металл | твердый электролит | органический полупроводник и в «короткозамкнутых», организованных путем непосредственного контакта катода и анода, определения возможности использования органических полупроводников (производных гетероциклических соединений фенотиазина, фульвалена, тиопирилия и пиридиния) в качестве активных электродных материалов в твердофазных преобразователях энергии.

	Название соединения	Структурная формула	Темпера- тура плавления, К	Электро- провод- ность, См ⁻ см ⁻¹
	С ₁₆ Н ₁₄ S ₄ 7,7,8,8-тетрациано- хинодиметан (ТЦХМ)	C(CN) ₂ C(CN) ₂	563	10 ⁻⁸
	С ₁₂ Н ₉ NS фенотиазин (ФТА)	S NH	455	<10-8
	С ₁₂ H ₉ NSI ₃ трииодид фенотиазина (ФТАІ ₃)	NH S I3	431	0,3
1	С ₁₄ H ₈ S ₄ дибензотетратиа- фульвален (ТФ)	S = C	515	<10-8

3

	С ₁₆ Н ₁₄ S ₄ I ₃ трииодид диметилдибензо- тетратиофульвалена (ДМДБТТФІ ₃)	$H_{3}C \xrightarrow{S} C = C \xrightarrow{S} C S$	526	<10 ⁻⁸
	(C ₁₇ H ₁₃ S) ₂ SnCl ₆ гексахлорстаннат 2,6- дифенилтиопирилия (TП1) ₂ SnCl ₆	C_6H_5 C_6H_5 $0.5SnCl^{2-}_6$	550	2·10 ⁻²
	(C ₁₉ H ₁₇ S) ₂ SnCl ₆ гексахлорстаннат 2,6- дифенил-3,5- диметилтиопирилия (TП2) ₂ SnCl ₆	$H_{3}C$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$	490	10-6
1	С ₂₅ H ₁₉ S ClO ₄ перхлорат 2,4- дифенил-7,8-бензо-5,6- дигидротиохромилия ТПЗСlO ₄	CIO ₄	486	3,3.10-4

4

С ₂₆ H ₂₀ S NO ₂ ClO ₄ перхлорат 2- фенил-4(м- нитрофенил)-6- метил-7,8-бензо-5,6- дигидротиохромилия ТП4СlO ₄	H ₃ C + S ClO ₄	493	5,6.10-4
С ₂₅ H ₂₁ SOClO ₄ перхлорат 2-фенил-4(п- метоксифенил)-7,8- бензо-5,6- дигидротиохромилия ТП5СlO ₄	C ₆ H ₄ OCH ₃ C ₆ H ₅ Cl0 ₄	520-523	1,2.10-4
С ₂₅ H ₁₉ S I _n иодид,(трииодид), (пентаиодид) 2,4- дифенил-7,8-бензо-5,6- дигидротиохромилия ТПЗI _n	C ₆ H ₅ S C ₆ H ₅ C ₆ H ₅ I ⁺ , I ₃ ⁺ , I ₅ ⁻	490-493	4,2.10-3

h

ТКЦ - 3,3-диэтилтиокарбоцианин; ТЦХМ - 7,7`,8,8`-тетрацианохиноиметан; ТФ -2,2`,6,6` диметилдибензотетратиофульвален (Синтез осуществлялся в соответствии с методиками, разработанными Любовской Р.Б. и сотр. в ИХФ АН СССР). ТП1; ТП2, ТП3, ТП4, П1, П2 - (Синтез осуществлялся в соответствии с методиками, разработанными на каф. органической химии СГУ Харченко В.Г. и сотр.)

Фрагменты структур КПЗ и ИРС

Рис.1. проекция структуры ТЭА·(ТЦХМ)2 вдоль оси с.

Рис.4. Фрагмент структуры (BEDT-TTF)₃·Ag_xI₈

Рис.3. Фрагмент структуры тетрагидротиоксантилия (ТПІ₃).

Рис.5. Фрагмент структуры гексахлорстаннат дибензотетратиофульвалена.

1

Структурные параметры комплексов с переносом заряда

Вещество	в о Параметры элементарной Число молекул в ячейки, Å ячейке		Длины связей, Å	
1	2	3	4	
БТТФІ ₃	a =19,888 b =14,551 c = 9,204	6	$I_{1} - I_{4} 2,095$ $I_{1} - I_{3} 2,017$ $I_{5} - I_{2} 4,120$ $I_{5} - I_{4} 2,941$	
ДБТТФ ₈ (SnCl ₆) ₃	a =14,991 b =14,991 c =27,885	2	Sn - Cl 2,510 Cl - Cl 4,270 Cl - S 3,170	
TTΦ I ₂	a =14,991 b =14,991	2	ТТФ-ТТФ 3,55-3,61 I - I 4,10	
TIII ₃	a = 9,679 b = 7,842 c = 7,278	1	$\begin{array}{cccc} I_1 - I_2 & 2,91 \\ I_2 - I_3 & 2,91 \end{array}$	
ТЭА(ТЦХМ) ₂	a = 13.22 b = 14,44 c = 7,89	2	D - D 3,34; 3,32; 3,33	
(TΦ) ₃ Ag _x I ₈	а=4,357 в=16,873 c=21,115	1	I ⁻ - I ⁻ 4,32 S - S 3,6 Ag - Ag 3,12	

Схемы электрохимических процессов с участием КПЗ и ИРС

Уравнения температурной зависимости э.д.с. систем

I _{2(крист.)}	E=2,992+0,00019(T-298)	(1)
$2\Phi TA \cdot 3I_3$	E=2,944 - 0,00110(T-298)	(2)
$2\Phi TA I_3$	E=2,874 + 0,00167(T-298)	(3)
ДМДБТТФІ ₃	E=2,871 - 0,00106(T-298)	(4)

Энергия Гиббса и направленность химических реакций в системе: Na|β-Al₂O₃|I₂;C

Состав β -глинозема: Na₂O·5Al₂O₃·0,1TiO₂·0,8CoO.

на аноде	$Na \leftrightarrow Na^{++}\overline{e}$,	(1)
на катоде	$^{1\!\!/_{2}} I_{2} + \bar{e} \leftrightarrow I^{-}$,	(2)
или	$Na + \frac{1}{2} I_2 \leftrightarrow \underline{NaI}.$	(3)

Энергия Гиббса образования Nal, Na₂O·5Al₂O₃, Na₂O·11Al₂O Na₂O + $I_2 \leftrightarrow 2NaI + \frac{1}{2}O_2$; $\Delta G = -197.016 \times \mathcal{I}_{\mathcal{H}}$; Na₂O + $I_2 \leftrightarrow 2NaI + \frac{1}{2}O_2$; $\Delta G = -197.016 \times \mathcal{I}_{\mathcal{H}}$;

 $Na_{2}O + 11Al_{2}O_{3} \leftrightarrow Na_{2}O \cdot 11Al_{2}O_{3}; \ \Delta G = -285.124 \kappa \mathcal{I} \mathcal{I} \mathcal{H} c, \quad (6)$ $\Delta G = -230.104 \kappa \mathcal{I} \mathcal{I} \mathcal{H} c.$

Свободная энергия Гиббса для реакций (7) – 62,154 кДж; (8) - 88,106 кДж.:

Уравнение температурной зависимости э.д.с. системы Na | Nal | I₂:

$Na_2O \cdot 5Al_2O_3 + I_2 \leftrightarrow 2NaI \cdot 5Al_2O_3 + \frac{1}{2}O_2,$	(7)
$Na_{2}O \cdot 11Al_{2}O_{3} + I_{2} \leftrightarrow 2NaI \cdot 11Al_{2}O_{3} + \frac{1}{2}O_{2}$	(8)

 $E=2,968\pm0,001-(1,119\pm0,022)\cdot10^{-4}(T-298,15).$ (9)

11

(4)

(5)

Переходные слои на границе йодный комплекс - β-глинозем

добавкой С; 7 - на Ті; г)**тт́ФІ**₃: 8 - первый цикл; д) І₂: 9 - на С; 10 - на Ті.

Электрические характеристики переходных слоев границы β-Al₂O₃ | I₂, иодный комплекс

№ пп	Система	ΔЕ _{пка анод.} , В	Q, Кл	$lpha^*$
1	Ti Na β -Al ₂ O ₃ C Ti	-	-	0,19-0,25
2	Ti Na β -Al ₂ O ₃ I ₂ ,C Ti	0,483	0,051	0,17-0,27
3	(2)(после гальваностатич. катод. вкл.Q=10 ⁻² -10 ⁻⁴ Кл)	0,776	0,036	0,14-0,11
4	Ti Na β -Al ₂ O ₃ I ₂ Ti	1,769	0,510	0,13
5	Ti Na β - l_2O_3 2Φ TA· $3I_3$ Ti	0,448	0,400	0,50-0,56
6	(5)(после гальваностатич. катодного включения Q=10 ⁻² Кл)	0,500	-	0,81-0,21
7	Ti Na β -l ₂ O ₃ 2 Φ TA·3I ₃ , C Ti	0,486	0,030	0,54
8	Ті Na β -Al ₂ O ₃ ДМДБТТ Φ I ₃ Ті	0,301	0,068	1,00-1,20
9	(9)(после гальваностатич. катодного включения Q=10 ⁻² Кл)	0,510	-	0,30
10	Ті Na β -Al ₂ O ₃ ДМДБТТ Φ I ₃ , C Ті	0,382	0,120	0,19
11	(11) (после гальваностатич. катодного включения Q=10 ⁻² Кл)	0,695	-	0,12
12	(12) После выдержки 2 часа	0,450	_	0,15

Поляризационные кривые границы: a: ΦTAl₃ / β-Al₂O₃; б, в: ДМДБТТФI₂ / β-Al₂O₃

а - ФТАІ₃ /β-АІ₂О₃при Vp, мВ/с: 1 – 1; 2 – 2; 3– 4, 4 – 8. б - катодная область поляризации; в - анодная область поляризации ДМДБТТФI_x / β -Al₂O₃ при x=3 кривые1, 2, 3; при x=5 кривые 1', 2', 3'; при V_p, мB/c: 1, 1'; - 2; 2, 2' - 4; 3, 3' - 8;. 4 - I₂,C| β -Al₂O₃, V_p=2 мB/c

Исследование катодного восстановления производных тиофульвалена, фенотиазина, тиопирана, пиридиния методом хроновольтамперометрии

Электрические параметры систем щелочной металл | органический полупроводник

Система	Тип проводимости	э.д.с., В	R, Ом	і _{к.з.} 10 ⁻⁶ А/см ²
Li ТЭА (ТЦХМ) ₂	n	0,00	8,0 · 10 ⁻²	-
Li ТКЦ (ТЦХМ) ₂	n	-	6 · 10 ⁻⁴	7,0.10 ³
L.Li ДМДБТТФІ ₃	р	3,00	8,0 · 10 ²	2950
Li ДМДБТТФІ _{1,5}	р	2,89	2,0 · 10 ⁴	2071
Na ДМДБТТФІ _{1,5}	р	2.65	4.1 · 10 ⁴	310
Na ДМДБТТФІ _{1,5} ,NaI	р	2.74	$4.4 \cdot 10^{4}$	1700
Na ДМДБТТФІ ₃	р	2.84	4.0 · 10 ⁴	255
L.Li 2ФTA·5I ₂	р	2.90	2.1 10 ³	5200
$1.Li (T\Pi 1)_2SnCl_6$	р	2.83	$7.0 \cdot 10^{2}$	490
$1.Li (T\Pi 2)_2 SnCl_6$	р	3.16	$2.5 \cdot 10^2$	6320
$L.Li (T\Pi 2)_2 SnCl_{6}, (T\Pi 2Li SnCl_6)$	р	2.76	$3.7 \cdot 10^{3}$	4100

Система	Тип проводимости	э.д.с., В	R, Ом	і _{к.з.} 10 ⁻⁶ А/см ²
.Li TII3ClO ₄	р	3.25	6.0 · 10 ²	1700
.Li TПЗI Li	р	2,89	2,0.104	2070
.Na TII3I	р	2,65	4,1·10 ⁴	3100
I.Na NaI TII3I	р	2,74	$4,4.10^{4}$	1700
.Na TII3I ₅	р	2,84	$4,0.10^{4}$	2250
I.Na NaI TII3I	р	2,74	$4,4.10^{4}$	1700
.Na ТПЗІ ₅	р	2,84	$4,0.10^{4}$	2250
I.Na NaI TII3I ₅	р	2,81	3,1.10 ⁴	2100
.Li TII3I ₃	р	3,00	8,0 [.] 10 ⁴	2950
.Li TП4ClO ₄	р	2,80	1,2·10 ³	2250
.Li TП4ClO ₄ , (LiClO ₄)	р	3.19	$2.0 \cdot 10^2$	5500
.Li Π1ClO ₄	р	2,30	$2,0.10^{6}$	1150
.Li П2ClO ₄	р	2,50	$2,2.10^{6}$	1230
Примечание. ТКЦ – 3,3-диэтилтиокарбоциан	ин; ТЭА – триэтиламин.			

Типичные разрядные кривые(а,б) и хронопотенциограммы (в,г) систем: Li|ДБТТФIз, xLi-19 (1-x)Al|ФТА·nI₂,Li|ТП3ClO₄,Li|(ТП1)2SnCl₆

при токах, мих/см⁻, T = 290 К. **a** – Li|ДБТТФI3: 1, 1' – 0,02; 2,2' – 0,04; 3 – 0,10; 3' – 0,20 (1', 2', 3'–с добавкой Lil); **б** – xLi–(1-x)AI|ФТА·пI₂: 1 – 0,015 (n=3, x = 20%); 2 – 0,015 (n=5, x = 30%); 3 – 0,045 (n = 5, x = 30%); **в** – Li|TПЗСIO₄: 1 – 0,05; 2 – 0,25; 3 – 0,38; 4 – 0,50; 5 – 0,75; 6 – 1,00; **г** – Li|(TП1)₂SnCl₆: 1 – 0,32; 2 – 1,00; 3 – 2,00; 4 – 4,00; 5 – 0,16; 6 – 0,21 (кривые 5 и 6 - с продуктом катодного восстановления). Рис.1. Зависимость наклона гальваностатических кривых от количества пропущенного электричества в системах:

1 - Li-Al|2ФТА•5I₂; 2 - Li-Al| ДБТТФІз. Сплав: 30% Li-70%Al

Рис.2.

Хронопотенциограммы в координатах Делахея-Берзинса системы Li|TП3ClO₄ с продуктом разряда при токе 0,16 мA/см². ________ ДЕ >> RT / nF

Исследование катодного восстановления систем 2 щелочной металл/органический полупроводник методом циклической вольтамперометрии

I^a / I^к <1 i Ox+ne↔Red↔M Лимитирующей стадия перенос заряда

Рис.1. Конструкция корпуса трехэлектродной ячейки, герметичный вариант:

1, 6 – пуансоны (токоотводы);

2 – корпус;

3 – электрод сравнения;

4, 5 – анодный и катодный материалы;

7 – герметизирующая прокладка.

Рис.2 Циклические поляризационных кривые системы Li/TП4CIO₄ при скорости развертки B/c: 1 –0,004;2 – 0,008; 3 – 0,02

2,5

2,0

E.B

22

	Система	К, мин ⁻¹	n
	Li TΦI ₃	3,8.10-2	1,22
	Li TΦSOCl ₂	2,4.10-2	1,21
J	Li TΦSOCl ₂	2,1.10-2	1,21
1	Li ДБТТФІ ₃ , 10%С	$1,5 \cdot 10^{-2}$	1,05
	Li ДБТТФI ₃ , 10%С, 2%LiI	3,8.10-2	1,22
	Li ДБТТФ ₈ (SnCl ₆) ₃ , 10% С	1,2.10-2	1,03
	Li-Al 2 Φ TA·5I ₅	1,1.10-2	1,20
	Li (TII1) ₂ SnCl ₆	2,4.10-3	1,20
	$\text{Li} (\Pi 2)_2 \text{SnCl}_6$	$2,8\cdot 10^{-3}$	1,27
	Li ТПЗСЮ ₄	$3,1.10^{-3}$	1,03

Рис.2: Приложимость уравнения Ерофеева-Колмогорова-Аврами к кинетике твердофазных электрохимических реакций:1 – Li-Al/ФТАl5; 2- β -Al₂O₃/ФTAl₅; 3–Li/ДМДБТТФ,10%С;4–i/ТФ2SOCl₂;5 – Li/ ТП3ClO₄; 6 - Li/TП3SnCl₆.

lgK

-3,0

-2,0

Топоэлектрохимические процессы, протекающие 23 на границах лития с органическим полупроводником Основные уравнения модели ТОПЗ

Катодное гальваностатическое включение системы прямого контакта Lil(TП2)2SnCl₆

Рис.1 Рентгеновские штрихдиффрактограмы: 1 – исходный (ТП2)2SnCl₆; 2 – с продуктом катодного гальваностатического включения системы Li|(ТП2)2SnCl₆

4 - 0,110; 5 - 0,140; 6 - 0,175.

Катодное гальваностатическое включение системы прямого контакта Lil(TП2)₂SnCl₆

Рис.1. Зависимость $\dot{\eta}$ -t катодного гальваностатического включения системы Li/(TП2)₂SnCl₆ при 298К и плотностях тока (A/см²): 1 – 0,016; 2 – 0,039; 3 – 0,046; 4 – 0,110; 5 – 0,140; 6 – 0,175.

Рис.2. Зависимость (a): α -t; (6):lg[-lg(1- α)]-lgt ЛЛЯ катодного гальваностатиче СКОГО включения системы $Li/(T\Pi)_{SnCl_{c}}$ 298К при И плотностях тока (A/cm^2) :1-0,016; 2 - 0,039; 3 -0,046; 4 - 0,110;5 - 0,140; 6 -0.175.

25

Катодное гальваностатическое включение системы прямого контакта Lil(TП2)₂SnCl₆

Рис.1. Зависимость стационарной толщины слоя переходной интерфазы от плотности тока катодного гальваностатического включения системы Li/(TП2)₂SnCl₆ при 298К.

Рис. 2. Зависимость коэффициента миграционной диффузии катионов лития от плотности тока катодного гальваностатического включения системы Li/(TП2)₂SnCl₆ при 298К.

26

Некоторые параметры исследуемых систем прямого контакта литий органический полупроводник по данным катодной хронопотенциометрии

	Органический полупроводник	Состав Li- <u>интер</u> фазы	i _{max,} A∕cm _∞ ²	$\frac{\partial i}{\partial \eta_{\infty}^{2}},$ $A/cM_{\infty}^{2}B^{2}$	n	γ, c ⁻¹	А, кДж/моль	<u>В</u> тах с ⁻¹	L ^{max} , MKM	D _{Li} max, см²/с	Q _{уд.} , Кл/г интер- фазы
1	(TII2)2SnCl6	$(C_{29}H_{17}S)_2$ Li ₂ SnCl ₆	0,175	0,055	0,7	0,019	18,4	3,5	65	1,9·10 ⁻¹¹	790
2	TTI3I3	$\begin{array}{c} (\mathrm{C}_{25}\mathrm{H}_{18}\mathrm{S})_2\\ \underline{\mathrm{LiI}},\mathrm{I}_2 \end{array}$	0,005	0,002	0,7,	0,021	15,9	1,4	60	7 · 10 ^{-s}	21
3	TII3ClO ₄	(C ₂₅ H ₁₇ SNO ₂) ₂ LiCl, Li ₂ O	0,10	0,43	0,9	0,032	34,3	7000	44	6,5 ·10 ⁻⁷	434

Предполагаемый механизм катодного процесса

 $2\text{Li}^+ + \text{SnCl}_6^2 \xrightarrow{-} \leftrightarrow \text{Li}_2\text{SnCl}_6$

Механизм образования переходного 29 слоя короткозамкнутой системы литий-органический полупроводник

(квантово-химический расчет функционала плотности в варианте B3LYP)

I – катион органической соли; II – радикал; III - димер ; Ph = C_6H_5 . Температурная зависимость электропроводности (σ_0) синтезированных продуктов

- $(T\Phi I_{15} LiI) \quad \sigma T = (5,51\pm9,04) \times 10^4 \exp[-(0,275\pm0,044)/kT]$ (1)
- (T Φ I LiI) σ T =(0,64±1,41)x10⁵ exp[-(0,281±0,059)/kT] (2)
- $(T\Phi I_{15}-NaI) \quad \sigma T = (6,10\pm3,76) \times 10^3 \exp[-(0,184\pm0,016)/kT]$ (3)
- (T Φ I NaI) σ T =(1,04±3,32)x10⁷ exp[-(0,396±0,085)/kT] (4)
- (TIII LiI) $\sigma T = (0,47\pm1,25) \times 10^{11} \exp[-(0,587\pm0,071)/kT]$ (5)
- (TIII NaI) $\sigma T = (0,37\pm1,95) \times 10^{13} \exp[-(0,703\pm0,059)/kT]$ (6)

Твердофазный и электрохимический синтез ТЭЛ

Рис.1.Частотная зависимость годографа $1/\omega C_{s} - R_{s}$ систем 1 – $T\Phi I_{3}$ -Lil; 2 – $T\Phi I_{3}$ -Nal (твердофазный синтез)

3

Рис.2. Частотная зависимость годографа $1/\omega C_{s}$ -R_s продукта электролиза в ячейке Na| β -Al₂O₃|T Φ l₃.

Параметры общей (σ_{общ.}) и электронной (σ_е) од проводимостей продуктов электрохимических реакций короткозамкнутых систем (298 К)

Система	σ _{общ} , См/см	σ _e , См/см
M _x R _{yz} M-L ₁ , Na; R-производные ФТА; 0,25 <x<0,75; 3<y<5;<br="">0,5<z<0,75< th=""><th>(0,7÷1,7) · 10⁻³ (Li⁺) (1,2÷5,0) · 10⁻⁴ (Na⁺)</th><th>5 · 10⁻⁵</th></z<0,75<></x<0,75;>	(0,7÷1,7) · 10 ⁻³ (Li ⁺) (1,2÷5,0) · 10 ⁻⁴ (Na ⁺)	5 · 10 ⁻⁵
M _x R _y I _z R – производные ТФ; M - Li, Na, 1 <x<1,5< th=""><th>$(10^{-3} \div 10^{-4})$ (Na⁺) $10^{-3} \div 2,9 \cdot 10^{-2}$ (Li⁺)</th><th>(5,2÷6,1) · 10⁻⁴</th></x<1,5<>	$(10^{-3} \div 10^{-4})$ (Na ⁺) $10^{-3} \div 2,9 \cdot 10^{-2}$ (Li ⁺)	(5,2÷6,1) · 10 ⁻⁴
M _x RI _{x+1} R – производные ТП M - Li, Na; 1 <x<4< th=""><th>$(0,7\div3,0)\cdot10^{-2}$ (Li⁺) $(10^{-3}\div0,9\cdot10^{-5})$(Na⁺)</th><th>10⁻⁴÷10⁻⁵</th></x<4<>	$(0,7\div3,0)\cdot10^{-2}$ (Li ⁺) $(10^{-3}\div0,9\cdot10^{-5})$ (Na ⁺)	10 ⁻⁴ ÷10 ⁻⁵

Схемы механизмов реакций

 $R - T\Pi, T\Phi;$

A - анионы ClO⁻⁴, SnCl⁻²₆, I⁻_n (1<n<3);

Me-Li, Na.

35

Спектральные характеристики систем:

а – Li|TП3СlO₄: 1- исходный ТП3ClO₄; 2 - продукт электрохимической реакции;

6 - Na|TΦI₃:
1- нейтральный ТФ⁰;
2 – исходный ТФІ₃;
3 – продукт электросинтеза в ячейке Na| β-Al₂O₃ | ТΦІ₃

ИК-спектры продукта химической реакции Li +TФ в ацетонитриле:

1 – в инертной атмосфере; 2 – на воздухе

36

ТВЕРДОТЕЛЬНЫЕ ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ЭНЕРГИИ

(1', 2', 3'- заряд).

Электрические характеристики систем для ХИТ

	Системы	Э.д.с., В	і мА/см ²	і _{зар.} мА/см ²	і _{раз,} мА/см ²
	1	2	3	4	5
	1.Na(Hg) β-Al ₂ O ₃ ДМДБТТФІ ₃	2,8-3,0	3,01-5,03	-	0,1
	2.Na(Hg) β -Al ₂ O ₃ Φ TAI _n (n=2; 5)	2,8-3,08	9-25	0,005	0,04
	3.Na(Hg) β -Al ₂ O ₃ TΠ3I ₃	2,8-2,9	5-7	-	0,4
	4.Li/ДМДБТТФІ ₃	2,86	-	-	0,01
	5.Li /ТПЗІ ₃	2,80	1,02	0,05	0,1
	6.Li /ТПЗСЮ ₄	2,80-2,90	1,02-6,35	0,1	0,25
	7.Na/TII12SnCl ₆	2,92-3,15	3,10-5,90	0,01	0,25
	8.Li/TП2SnCl ₆	3,16	6,3	0,005	1
	9.Li-Al/ФТАІ _n (n=3; 5) (сплав Al-70%, Li-30%)	2,40-2,75	1,01-3,50	-	0,1-0,25
	10.Li-Al/ ТП12SnCl ₆	2,75	3,0	0,008	0,25

В диапазоне комнатных температур исследуемые системы обладают следующими выходными параметрами: э.д.с. = 2,4-3,16 В; токи разряда i_{раз.} = 4 - 250 мкА; разрядное напряжение U_{разр}. = 2-3 В; емкость Q=20-60 мА·ч; теоретическая удельная энергия W_{уд.} =100–2000 Вт·ч/кг.

Спасибо за внимание

