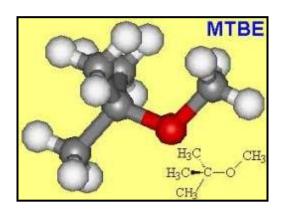
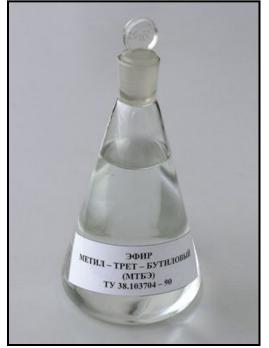
Технология переработки нефти, природного и попутного газов

Лекция № 4.4

Синтез метил-трет-бутилового и трет-амилметилового эфиров

Лектор – к.т.н., доцент кафедры XTT Юрьев Е.М.


Производство МТБЭ и ТАМЭ



• Термины и определения

МТБЭ – метил-*трет*-бутиловый эфир ТАМЭ - *трет*-амил-метиловый эфир

ОЧИ – октановое число, определенное исследовательским методом;

ОЧМ - октановое число, определенное исследовательским методом;

ДНП – давление насыщенных паров;

ББФ фракция – бутан-бутиленовая фракция.

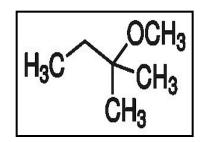
• Общие сведения

МТБЭ и ТАМЭ применяются в качестве кислородосодержащих высокооктановых компонентов при получении неэтилированных, экологически чистых автомобильных бензинов.

МТБЭ и ТАМЭ обладают высоким октановыми числами и низкой температурой кипения, что в совокупности позволяет повысить октановое число преимущественно головных фракций базового бензина.

При добавлении эфиров к моторным топливам, повышается температура горения топлива и эффективность работы двигателя, значительно снижается содержание окиси углерода и углеводородов в выхлопных газах, улучшается запуск двигателя при низких температурах, кроме того обеспечивается более полное сгорание моторного топлива.

МТБЭ по объему применения является основным оксигенатом в нашей стране и за рубежом. **ТАМЭ** в настоящее время за рубежом становится вторым по значению после **МТБЭ** высокооктановым компонентом бензина. **ТАМЭ** отличается от **МТБЭ** более низкими октановыми числами и давлением насыщенных паров, а также большей теплотой сгорания.


Общие сведения

<u>МТБЭ:</u>

- растворяется в бензине в любых соотношениях;
- практически не растворяется в воде;
- не ядовит. Первая промышленная производства ТАМЭ в 1989г. в Италии.

<u>ТАМЭ:</u>

растворим в этаноле, диэтиловом эфире, плохо – в воде;

легко воспламеняется и образует взрывоопасные **смеси с воздухом.** установка производства МТБЭ (производительность 100 тыс. т/год) была пущена в 1973г. в Италии;

В настоящее время во всем мире вырабатывается около 25 млн. тонн МТБЭ в год, более чем на 100 установках.

Наибольший эффект дает добавка 11% смеси МТБЭ с **ТАМЭ** (1 : 1) к 89-90% базового бензина с ОЧИ = 85-91, после чего получается бензин с ОЧИ = 93.

• Общие сведения

Таблица 1. Основные свойства

Поромотр	Значение		
Параметр	МТБЭ	ТАМЭ	
Химическая формула	C ₅ H ₁₂ O	C ₆ H ₁₄ O	
Молярная масса, г/моль	88,15	102,17	
Плотность при 20 °C, г/см ³	0,74	0,764	
Температура, °С			
кипения	55,2	86,3	
замерзания	-108,6	-80	
ОЧИ	115-135	98-112	
ОЧМ	100-101	94-100	
ДНП при 20 °C, кПа	27,1	9	
Теплота сгорания, МДж/кг	35,1	37	
Максимальное содержание в бензине, %	15		

Технология получения

МТБЭ получают в одну стадию за счет присоединения к изобутилену метилового спирта. Реакция происходит на специальном катализаторе с высокой селективностью и практически полной конверсией за проход.

Источником изобутилена могут быть C₄ фракции каталитического крекинга или пиролиза.

ТАМЭ получают на базе продуктов каталитического крекинга. Во фракции С₅ содержится примерно 20 - 30% изоамиленов.

Технология получения

Таблица 2. Примерный состав сырья, % мас.

Компонент	ББФ каталитического крекинга	ББФ пиролиза (после очистки от бутилена)	
∑C ₃	1,9	< 1	
изобутан	32	2	
н-бутан	10	12	
бутен-1 + бутан-2	44,4	37	
изобутилен	10	48	
∑C5	1,7	< 0,1	

ББФ каталитического крекинга, необходимо очищать от сернистых соединений, которые представлены в основном метил- и этилмеркаптаном, очистка от которых осуществляется их щелочной экстракцией и последующим окислением тиолятов с применением гомогенных или гетерогенных катализаторов в присутствии кислорода воздуха с получением дисульфидного масла.

Вторым сырьевым компонентом синтеза **МТБЭ** и **ТАМЭ** является **Метанол** марки A по ГОСТ 2222-78.

Химизм

Основная реакция:

конденсация метанола и изобутилена в МТБЭ

$$\begin{array}{|c|c|c|c|c|}\hline CH_2 & CH_3 \\ || & | \\ CH_3OH+C-CH_3 & CH_3-O-C-CH_3 \\ | & | \\ CH_3 & CH_3 \\ \hline \end{array}$$

Основная реакция:

конденсация метанола и изоамилена в ТАМЭ

$$\begin{array}{|c|c|c|c|}\hline & CH_2 & CH_3 \\ & & | \\ CH_3OH+C-CH_2-CH_3 & CH_3-O-C-CH_2-CH_3 \\ & | \\ & CH_3 & CH_3 \\ \hline \end{array}$$

Химизм

Побочные реакции:

• Димеризация изобутилена с образованием изооктилена:

- Гидратация изобутилена водой, содержащейся в исходном сырье с образованием изобутилового спирта;
- Дегидроконденсация метанола с образованием диметилового эфира:

• Если в метаноле содержится этанол, то образуется этил-трет-бутиловый эфир (**ЭТБЭ**);

Химизм

Побочные реакции:

Побочные реакции с образованием димеров изобутилена и третбутанола, являются вредными составляющими основного продукта – МТБЭ, и поэтому их содержание в МТБЭ нормируется

• Катализаторы

В промышленных процессах синтеза **МТБЭ** и **ТАМЭ** в качестве катализаторов наибольшее распространение получили сульфированные ионообменные смолы.

В качестве полимерной матрицы сульфокатионов используются полимеры различного типа:

- поликонденсационные (фенолформальдегидные);
- полимеризационные (сополимер стирола с дивинилбензолом);
- фторированный полиэтилен;
- активированное стекловолокно и некоторые другие.

Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов:

- с невысокой удельной поверхностью около 1 м²/г (дауэкс-50, КУ-2);
- макропористые с развитой удельной поверхностью 20 - 400 м²/г (амберлист-15, КУ-23).

MACA 20 ±0,2 kg

• Катализаторы

• Основная трудность использования –

большое гидродинамическое сопротивление катализаторного слоя;

• Отечественный формованный ионитный катал

- 1. большие размеры гранул,
- 2. высокая механическая прочность,
- 3. высокая активность,
- 4. продолжительный срок службы,
- 5. используется одновременно как ректификационная насадка.

• Сочетание реактора с ректификацией в одном реакционноректификационном аппарате позволяет:

- обеспечить практически полную конверсию за счет исключения термодинамических ограничений путем непрерывного вывода целевого продукта из зоны реакции;
- проводить процесс при более низком давлении и более эффективно использовать тепло реакции для проведения процессов ректификации непосредственно в реакторе, снижая энергоемкость процесса;
- упростить аппаратурное оформление и значительно сократить 14

Технология

Синтез МТБЭ (ТАМЭ):

- протекает в жидкой фазе с выделением тепла (≈60 кДж/моль);
- по цепному карбений-ионному механизму;
- равновесие реакции смешается в сторону образования

продуктов при ↑ давления и ↓ температуры;

Таблица 3. Оптимальные пределы режимных параметров конверсия изобутипена (изоамипена) 99 5%

Параметр	Пределы
Температура в зоне реакции, °С	60 – 70
Давление, МПа	0,7-0,75
Объемная скорость подачи ББФ, ч ⁻¹	1,5
Мольное соотношение метанол : изобутилен	4:1

• Технология

Синтез МТБЭ (ТАМЭ):

• Температура:

При понижении температуры ниже 60 °C скорость реакции образования МТБЭ падает.

Повышение температуры более 80 °С приводит к увеличению скорости протекания побочных реакций, с образованием повышенного количества третбутанола, а при нехватке в системе метанола, к образования димеров изобутилена.

Дальнейшее повышение температуры в слоях катализатора, свыше 110 °C, приводит к спеканию катализатора.

Технология

Синтез МТБЭ (ТАМЭ):

• Давление:

С повышением давления продукта в реакторе растет доля жидкой фазы в реакционной смеси, химическое равновесие реакции смещается в сторону образования МТБЭ.

Оптимальным давлением продукта для процесса синтеза МТБЭ является давление в 1,0 МПа.

Существующий в типовых реакторах противоток жидкой и газовой фаз, способствует быстрому выведению образовавшегося МТБЭ из зоны реакции (со слоев катализатора) для предотвращения обратной реакции, реакции распада МТБЭ на исходные продукты.

• Технология

Синтез МТБЭ (ТАМЭ):

 Расход сырья/соотношение сырьевых компонентов: Низкий расход сырья (ББФ и метанола) увеличивает время контакта, приводит к увеличению выхода МТБЭ и снижению остаточного изобутилена в отработанной ББФ, однако селективность снижается. Избыток метанола по отношению к изобутилену ведет к повышению скорости целевой реакции относительно скоростей побочных реакций, способствует стабилизации температурного режима. Избыток метанола также способствует повышению степени извлечения из ББФ изобутилена и замедлению его димеризации. Повышение содержания метанола увеличивает долю жидкой фазы в слое катализатора При ректификации реакционной смеси избыточный метанол образует азеотропное соединение с отработанной ББФ.

Температура кипения азеотропного соединения ниже, чем у МТБЭ

Технология

Синтез МТБЭ (ТАМЭ):

• Качество сырья:

Присутствие в сырье воды, продуктов коррозии оборудования, щелочи, азотистых и сернистых соединений приводит к образованию побочных продуктов и к значительному снижению активности катализатора.

Для снижения содержания примесей, схемой предусмотрена предварительная очистка сырья в фильтрах :

- ББФ перед подачей в реактор форконтактной очистки сырья;
- метанола перед подачей в реактор форконтактной очистки сырья и в реактор синтеза.

В качестве фильтрующего агента используется отработанный катализатор (КУ-2ФПП)

• Технология

Синтез МТБЭ (ТАМЭ):

•Процесс синтеза МТБЭ осуществляется на реакционноректификационном блоке, состоящем из двух взаимозаменяемых реакторов и ректификационной колонны.

Схемой предусмотрено переключение сырьевых потоков таким образом, что один из реакторов (P-350 или P-351) работает в режиме форконтактной очистки сырья на отработанном катализаторе, другой – в режиме синтеза МТБЭ на свежем катализаторе.

Форконтактный аппарат предназначен для очистки углеводородной фракции от возможных примесей серо- и азотосодержащих соединений, а также для поглощения катионов железа, присутствующих в регенерированном метаноле, вследствие возможной коррозии оборудования.

Технология

Синтез МТБЭ (ТАМЭ):

Также реактор форконтактной очистки сырья может использоваться в режиме легкого синтеза, для увеличения срока службы катализатора и боле глубокого извлечения изобутилена из ББФ. При данной схеме работы реактора форконтактной очистки сырья, очистка сырьевых потоков происходит в фильтрах.

Продукты процесса синтеза МТБЭ:

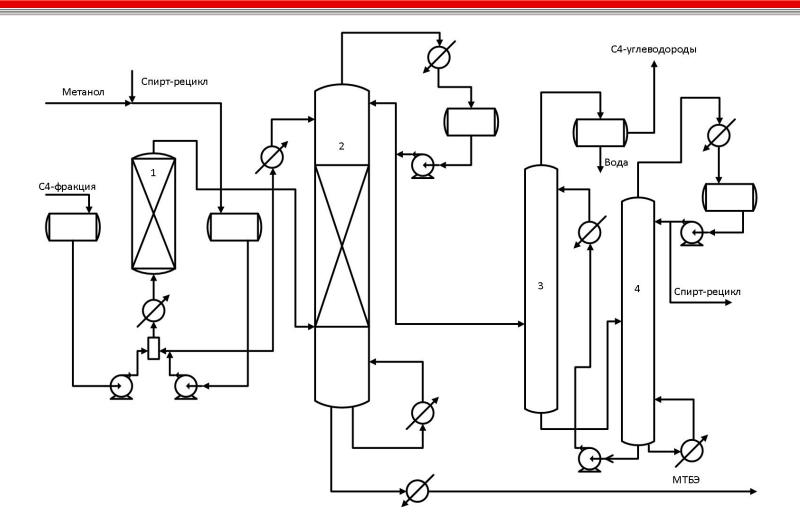
- отработанная ББФ;
- МТБЭ.

Катализатор КУ2-ФПП (г. Омск)

Недостатки: набухаемость, низкую термическую стабильность, характерные для всех сульфокатионитов, и недостаточную селективность.

• Технология

Синтез МТБЭ (ТАМЭ):


Реактора синтеза (высота 28,73 м; диаметр 4 м):

Реактор форконтактной очистки сырья находится полностью под продуктом в жидкой фазе, в нем происходит процесс синтеза МТБЭ в легкой форме.

В основном реакторе синтеза организован противоток метанола и сырья (ББФ + МТБЭ).

Реактора синтеза имеют по 3 распределительные решетки (тарелки), на которые загружается катализатор с кольцами «Рашига». Каждый слой катализатора размещается между слоями колец «Рашига», для равномерного распределения газо-жидкостных потоков, удержания катализатора в равномерно распределенном состоянии и для исключения уноса катализатора потоком сырья.

• Технология

1 – фор-реактор; 2 – основной реактор; 3 – колонна водной отмывки; 4 – колонна выделения (регенерации) спирта;

Технологическая схема

- Расход свежей ББФ 20-45 м³/ч
- Температура свежей ББФ не более 40°C
- Расход свежего метанола в схему 7-15 м³/ч
- Температура продукта реактора форконтактной очистки сырья не более 70
- Температура смеси ББФ и метанола на входе в основной реактор 55-70 °C
- Давление продукта в нижней части реактора синтеза не более 1,05 МПа
- Температура продукта в основном реакторе 60-80 °C
- Отношение расходов метанола в форконтактный реактор и основной реактор (1-1,5):1.
- Температура в колонне разделения ББФ и метанола 80-135 °C.
- Конверсия изобутилена до 99 %;
- Чистота МТБЭ 97-99 % (с доп. ректиф. колонной до 99,5 %);

Нормы аналитического контроля (ОАО «Газпромнефть-ОНПЗ»)

2.	Реакционная смесь после реактора форконтакта	Линия выхода реакцион ной смеси из T-352	1. Сумма азотистых соединений (в пересчете на азот), массовая доля, %,	Методика ООО «НТЦ ХТ» (гидролизна я)	Не более 0,00050	По треб.
		. 332	2. Углеводородный состав, массовая доля, %,	методика STRATCO	Не норм.	1 раз в сутки
			3. Массовая доля МТБЭ, %	методика STRATCO	Не норм.	1 раз в сутки
			4. Массовая доля метанола, %,	Методика STRATCO	Не норм	1 раз в сутки

5.	Метанол	Трубопро	1. Массовая доля	ГОСТ	Не более	По треб.
	циркулирующий	вод	свободных кислот	25742.2	0,0015	
		нагнетан	в пересчете на			
		ия насоса	муравьиную			
		H-352	кислоту, %			
			2. Массовая доля	п. 2 ГОСТ	Не более	1 раз в
			воды, %	14870	0,05	сутки
			3. Плотность при	п. 3.3ГОСТ	Не норм.	1 раз в
			20 °C, г/см ³	2222		сутки

Нормы аналитического контроля (ОАО «Газпромнефть-ОНПЗ»)

8.	Бутан-бутиленовая	Трубопро	Компонентный	Методика		
	фракция отработанная	вод	состав, массовая	STRATCO		
	(E-353)	нагнетан	доля, %:			
		ия насоса	- МТБЭ,		Не более	2 раза в
		H-353			0,01	сутки
			- метанол,		Не более	2 раза в
					5,0	сутки
			- сумма		Не норм.	2раза в
			углеводородов,			сутки
			- изобутилен		Не норм.	2 раза в
						сутки

Нормы аналитического контроля (ОАО «Газпромнефть-ОНПЗ»)

10.	_ ' ' '	на складе (Е-8□ Е-10 парк	1. Внешний вид	п. 5.2 ТУ 38.103704-90	Прозрачна я жидкость	По треб.
			2. Массовая доля метилтрет - бутилового эфира, %	ТУ 38.103704-90 п.5.3 или ASTMD 5441	Не менее 96,0	По треб.
			3. Массовая доля спиртов, %	ТУ 38.103704-90 п.5,3 или ASTMD 5441	Не более 2,5	По треб.
			4. Массовая доля углеводородов $\mathrm{C_4}$ и $\mathrm{C_8}$, %	ТУ 38.103704-90 п.5,3 или ASTMD 5441	Не более 1,5	По треб.
			5. Массовая доля влаги, %	п. 2 ГОСТ 14870	Не более 0,1	По треб.
			6. Механические примеси	ТУ 38.103704-90 п.5.4	Отсутствие	По треб.
		7. Плотность при 20 °C, г/см ³	ГОСТ 18995.1	Не норм.	По треб.	

Технологическая схема

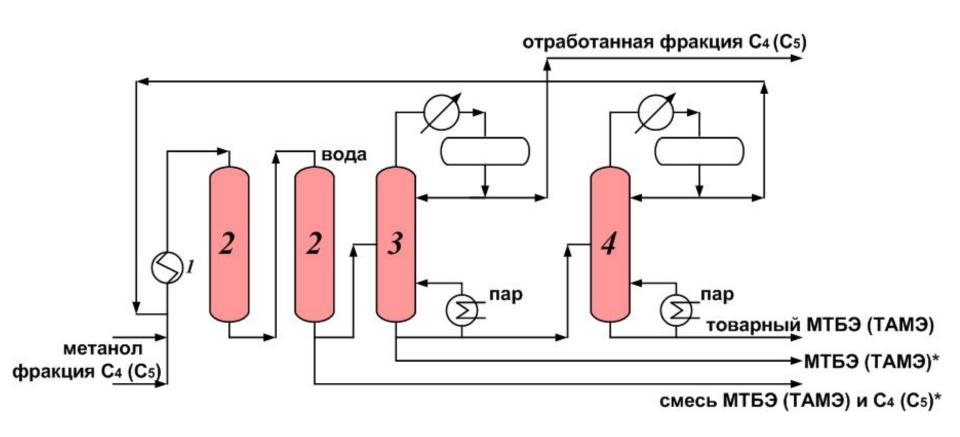


Рисунок 1. Технологическая схема получения МТБЭ (ТАМЭ) (фирмы Chemische Werke Huls)

1 – подогреватель, **2** – реакторный блок, **3** – бутиленовая колонна,

4 – метанольная колонна; * – получены при более низкой конверсии изобутилена.

Технологическая схема

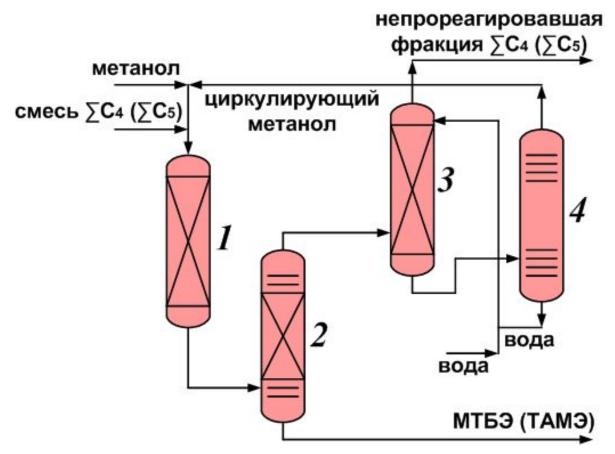
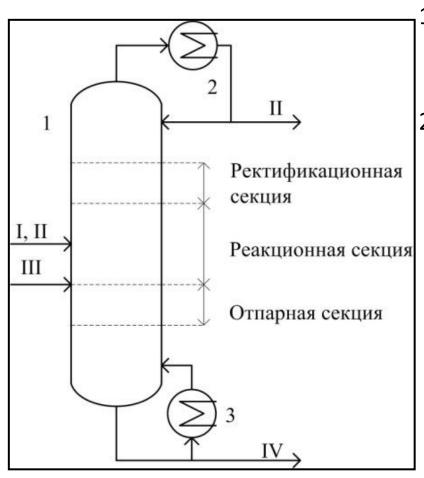



Рисунок 2. Технологическая схема получения МТБЭ (ТАМЭ) (фирмы *CD Tech*)

1 – реактор, 2 – колонна с каталитической дистилляцией,
 3 – экстракционная колонна, 4 – метанольная колонна.

Процесс синтеза **МТБЭ** и **ТАМЭ** осуществляется в реакционноректификационном аппарате, состоящем из:

- средней реакторной зоны, разделенной на три слоя катализатора,
- верхней и нижней ректификационных зон с двумя тарелками в каждой.

Рисунок 3. Колонна реакционной ректификации:

- *I* изобутилен, *II* н-бутен, *III* метанол, *IV* – МТБЭ;
- 1 реакционно-ректификационная колонна;
 2 полный конденсатор;
 3 рибойлер.

МТБЭ

Преимущества:

- Прирост октанового числа 5-9 пунктов (для эталонной смеси с ОЧМ 70);
- Снижается содержание токсичных веществ в выхлопных газах (2 % кислорода в топливе дают снижение СО и УВ в отработанных газах до 7-10 %);
- Можно производить высокооктановые добавки на основе МТБЭ (например, Фэтерол: МТБЭ + *трет*бутиловый спирт такой же эффективный по ОЧ, но более дешевый);
- Облегчает фракционный состав, что позволяет вовлекать в приготовление товарного бензина тяжелые фракции, например, кат.крекинга);
- Меньше, чем спирты, вымывается водой, не выделяется из бензина при низких температурах;
- Выше объем получаемого топлива (по сравнению с этанолом как оксигенатом);

Недостатки:

- Производственные мощности по МТБЭ загружены на 50-60 % из-за нехватки изобутилена;
- Высокая экологическая опасность МТБЭ (при попадании в окружающую среду из-за утечек, высокой испаряемости, низкой биоразлагаемости, низкой сорбции частицами грунта);
- Колебание цен на природный газ и н-бутан (в США);

На установке имеются два реакционно-ректификационных аппарата.

На одном из них после потери активности катализатора (через 4000 ч работы) осуществляется предварительная очистка исходной сырьевой смеси от серо- и азотсодержащих примесей, а также для поглощения катионов железа, присутствующих в рециркулирующем метаноле вследствие коррозии оборудования.

Таким образом, поочередно первый аппарат работает в режиме форконтактной очистки сырья на отработанном катализаторе, а другой - в режиме синтеза **МТБЭ** (**ТАМЭ**) на свежем катализаторе.

Катализатор после выгрузки из форконтактного аппарата не подвергают регенерации (направляют на захоронение).

Рисунок 4. Технологическая Комбинированная установка по производству МТБЭ ОАО «ГАЗПРОМНЕФТЬ-МНПЗ»

Рисунок 5. Технологическая Комбинированная установка по производству ТАМЭ ОАО «ГАЗПРОМНЕФТЬ-МНПЗ»

Литература

- Справочник нефтепереработчика / Под ред. Г. А. Ластовкина, Е. Д. Радченко,
 М. Г. Рудина. Л. : Химия, 1986. 648 с.
- 2. Данилов А. М. Введение в химмотологию. М.: Техника, 2003. 464 с.
- 3. Технология и оборудование процессов переработки нефти и газа: учебное пособие / С. А. Ахметов [и др.]. СПб. : Недра, 2006. 868 с.
- 4. Технология переработки природных энергоносителей : учебное пособие / А. К. Мановян. М. : Химия : КолосС, 2004. 455 (
- **5.** Интернет ресурс: www.mtbe.ru.
- **6.** Интернет ресурс: www.ru.wikipedia.org.
- 7. Интернет ресурс: www.newchemistry.ru.
- 8. Интернет ресурс: www.xumuk.ru.
- 9. Интернет pecypc: www.chemicalland21.com.
- **10.** Интернет ресурс: www.e-him.ru.

Вопросы

- 1. Для какой цели применяется данный процесс?
- 2. Какие целевые реакции протекают в данном процессе?
- Какие катализаторы применяются в данном процессе?
- 4. Перечислите основные технологические параметры процесса?
- 5. Требования к сырью процесса?
- 6. Требования к получаемому продукту?

Вопрос	Правильный ответ	Неправильные ответы			
МТБЭ - это	метил-трет- бутиловый эфир	материальный, тепловой баланс и энтальпия	метод транспортиров ки безопасный экологичный	метанол, толуол, бензол, этилен	
Какова токсичность МТБЭ?	не токсичен	среднетоксиче н	очень токсичен	малотоксичен	
Какое влияние оказывает добавление МТБЭ, ТАМЭ на бензины?	повышает детонационную стойкость	увеличивает токсичность	понижает токсичность	понижает детонационную стойкость	