

ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ В Г. ТАГАНРОГЕ

Факультет электроники и приборостроения

Кафедра технологии микро- и наноэлектронной аппаратуры

Разработка SiC автоэмиттеров

Автор – аспирант ТТИ ЮФУ Волков Е. Ю. Научный руководитель – к.т.н., доцент Светличный А.М.

Таганрог 2012

Автоэмиссионные катоды

Автоэмиссионные катоды (АЭК) обладают совокупностью свойств, делающих их исключительно перспективными. Это единственный тип катодов, для которого не требуется предварительного возбуждения эмиссии. Автоэлектронная эмиссия из металлических и полупроводниковых веществ обеспечивается сильным ~ 10⁷ В/см внешним электрическим полем, которое снижает и, что особенно важно, сужает потенциальный барьер вблизи поверхности катода.

Наиболее характерными достоинствами автоэмиссионных катодов являются следующие:

- Высокая экономичность, обусловленная отсутствием накала.
- Устойчивость эмиссии к колебаниям температуры в широком ее диапазоне: от гелиевой до температуры красного каления.
- Высокая плотность тока эмиссии, достигающая 10⁹ А/см².
- Устойчивость эмиссии к радиационному облучению вплоть до уровня, вызывающего разрушение материала автокатода.
- Высокая крутизна вольт-амперной характеристики, обусловленная экспоненциальной зависимостью тока от напряжения.
- Безынерционность отклика тока на изменение внешнего напряжения.

Совокупность этих свойств делает автоэмиссионные катоды чрезвычайно привлекательными источниками свободных электронов и стимулирует разработки приборов и устройств электронной техники на их основе.

Классификация и типы эмиттеров (автоэмиссионных катодов)

По количеству эмиттеров:

- одноэмиттерные
- многоэмиттерные
- многоострийные
- По геометрии эмиттера:
- "острые" формы выступы, нити, острия, лезвия, торцы трубок
- их системы пучки нитей, пакеты лезвий, углеродные нанотрубки

Характеристика карбида кремния

Единственным бинарным соединением, образованным полупроводниковыми элементами IV группы, является карбид SiC, в природе практически не встречающийся. Технический карбид SiC изготавливается в электропечах при восстановлении кварцевого песка углеродом:

 $SiO_2+3C \rightarrow SiC+2CO.$

Соединение SiC не взаимодействует с кислотами, растворяется (травится) в нагретых расплавах щелочей. Электропроводность и окраска кристаллов SiC – примесная, чистый карбид Si – бесцветен.

Существует около 170 известных политипов карбида кремния, пока только два из них доступны для серийного изготовления полупроводниковых приборов - это 4H-SiC и 6H-SiC.

Электрофизические свойства основных политипов карбида кремния (Т=300 К)

Модификация	β–SiC	a–SiC			
Символ политипа	3C	15R	6H	4H	2H
Период решетки ×10, нм	4,359	3,073(a)	3,081	3,076	1
		37,3(c)	15,12	10,05	-
Ширина запрещенной зоны, эВ	2,39	2,986	3,023	3,265	3,333
Подвижность электронов, м ² /(B·c)	0,1	0,05	0,033	0,07	_
Подвижность дырок, м ² /(В·с)	0,006	0,006	0,006	0,006	0,006

Преимущества SiC

полупроводниковых материалов

Наименование	Si	GaAs	4H-SiC
Ширина запрещенной энергетической зоны, эВ	1,12	1,5	3,26
Подвижность электронов, см² /с*В	1400	9200	800
Подвижность дырок, см² /с*В	450	400	140
Концентрация собственных носителей, см ^{-з} при 300 К	1,5*10 ¹⁰	2 , 1*10 ⁶	5*10 ⁻⁹
Скорость объемного заряда электронов, см/с*10 ⁷	1,0	1,0	2,0
Критическая напряженность электрического поля, МВ/см	0,25	0,3	2,2
Теплопроводность, Вт/см*К	1,5	0,5	3,0-3,8

- Напряженность электрического поля пробоя 4H-SiC более чем на порядок превышает соответствующие показатели у Si и GaAs. Это приводит к значительному снижению сопротивления в открытом состоянии
- Малое удельное сопротивление в открытом состоянии, в сочетании с высокой плотностью тока и теплопроводностью, позволяет использовать очень маленькие по размерам кристаллы для силовых приборов.
- Большая ширина запрещенной энергетической зоны является результатом более высокого барьера Шоттки по сравнению с Si и GaAs. В результате чрезвычайно малый ток утечки (менее 70 мкА при 2000С) при повышенной температуре кристалла снижает термоэлектронную эмиссию за пределами барьера.
- Высокая теплопроводность SiC снижает тепловое сопротивление кристалла (по сравнению с Si диодами почти в два раза).
- Электронные свойства приборов на основе SiC очень стабильны во времени и слабо зависят от температуры, что обеспечивает высокую надежность изделий.
- Карбид кремния чре́звыча́йно устойчи́в к жесткой радиации, воздействие которой не приводит к деградации электронных свойств кристалла.
- Высокая рабочая температура кристалла (более 6000С) позволяет создавать высоконадежные приборы для жестких условий эксплуатации и специальных применений.

Примеры приборов на SiC

SiC LDMOS транзистор

SiC UMOS транзистор

Пример простейшего катода из Ме

- 1 подложка
- 2 катодный слой из молибдена
- 2 катодный слой из молиодена
- 3 диэлектрический слой окиси алюминия
- 4 проводниковый слой молибдена
- 5 внешний коллектор

Испытания проводились в вакуумной камере, 10⁻⁷ Па

Способ изготовления SiC катода

Автоэмиссионные катоды разной формы: а — одноострийный; б — трехострийный; в — лезвийный; 1 — карбид-кремниевая пластина; 2 — осажденная пленка графена; 3 слой SiO₂; 4 — экстракционный электрод

При разности потенциалов в 100 В создается напряженность электрического поля, достаточная для автоэлектронной эмиссии в вакууме 1,5*10⁻⁵ Па. Полученная плотность автоэмиссионного тока примерно 1,5 * 10⁴ А/м².

Маршрут изготовления

Схема технологического маршрута изготовления автокатода на SiC

10

Расчет поля автокатода

Для расчета поля автоэмиссионного катода решается задача **Дирихле** для уравнения **Лапласа**. Одним из приближенных методов нахождения распределения потенциала, используемых при решении электронно-оптических задач, является метод конечных разностей, в основе которого лежит замена производных в исходном уравнении их приближенными выражениями через конечные разности.

Общая схема проведённых исследований состоит в следующем:

- В системе автоматизированных вычислений MatLab воспользуемся подпрограммой pdetool. Задаем геометрию катода, моделируем катод, анод, эмиттер, управляющие электроды с реальными размерами.
- Задаем граничные условия Дирихле, то есть потенциал на границах: на аноде -100 В, на катоде +45 В, на управляющих электродах +15 В.
- Задаем "сетку", которая используется в решении поставленной задачи.
- Далее запускаем процесс решения уравнения Лапласа и построения графиков распределения электрического потенциала и напряженности поля.

Так как для эмиссии электронов из эмиттеров, используемых в наших примерах, необходима напряженность близ кончика эмиттера 10⁷-10⁸ В/м, то можно выделить ту площадь эмиттера, с которой эффективно будут вылетать электроны, совершая работу выхода. В дальнейшем эта площадь будет использована для расчета эмиссионного тока.

Основные уравнения автоэмиссии

$$J = \frac{AE^2}{\phi_0 t^2(y)} \exp\left(-\frac{B\phi_0^{\frac{3}{2}}}{E}\theta(y)\right), \quad \text{Уравнение Фаулера- Нордгейма}$$

где *J* — плотность тока эмиссии, *E* — напряженность электрического поля на поверхности эмиттера, φ_0 — работа выхода материала эмиттера, A и B — константы уравнения, которые связаны с фундаментальными физическими величинами, согласно соотношениям: A = e³/8πh, B = 8π√2m/3eh, где *h* — постоянная Планка, е — заряд электрона, *m* — масса покоя свободного электрона, $\vartheta(y)$ — табулированная функция Нордгейма

Поверхностный потенциальный барьер на границе металл—вакуум в присутствие сильного электрического поля. Волнистой линией показан эффект туннелирования электронов сквозь барьер; Е напряженность электрического поля; е — заряд электрона; ф — работа выхода электронов

Расчет поля автокатода

- Зная напряженность вблизи кончика эмиттера, и зная работу выхода электрона из материалов, используемых для изготовления эмиттеров, можно определить плотность эмиссионного тока с помощью выражения Фаулера-Нордгейма
- После нахождения плотности тока переходим к току через формулу

$$I = J \cdot S$$

Зададим константы уравнения Фаулера-Нордгейма:

- 1) работа выхода электрона. Для эмиттера из карбида кремния это 4,8 эВ. Для эмиттера из арсенида галлия это 4,6 эВ.
- 2) $A=1,6\cdot10^{-6} A\cdot 3B\cdot B^{-2}$.
- 3) $B=7\cdot10^9 \ni B^{-3/2}\cdot B\cdot M^{-1}$.
- 4) $C=1,4\cdot10^{-9} \ni B^2 \cdot M \cdot B^{-1}$.
- 5) Е напряженность поля на кончике эмиттера.

Расчет поля автокатода: тип острийный

Максимальная напряженность поля

14

Распределение напряженности поля острийного эмиттера. Синим цветом указана площадь, из которой происходит эмиссия Распределение электрического потенциала в поле острийного эмиттера. Синим цветом указана площадь, из которой происходит эмиссия

Расчет поля автокатода: тип скругленный

Распределение напряженности поля эмиттера с закруглением. Розовым цветом указана площадь, из которой происходит эмиссия Распределение электрического потенциала поля эмиттера с закруглением. Розовым цветом указана площадь, из которой происходит эмиссия

Color: V

0,5 мкм

0.45 мкм

в

-20

-40

-60

-80

5 MKM

Подставляя эти значения, а также константы, приведенные выше, в уравнение Фаулера-Нордгейма, переходя от плотности тока к току, учтя площадь поверхностей, из которых идет эмиссия электронов, получим значения токов:

Исследование влияния редкоземельных металлов и их оксидов на эмиссионные свойства карбида кремния

Работа состоит из следующих этапов:

- **1**. Подготовка подложки карбида кремния (SiC)
- Напыление Ni на подложку SiC методом магнетронного распыления
- 3. Измерение толщины напыленного Ni
- 4. Получение омического контакта посредством вжигания Ni
- 5. Напыление редкоземельного металла (Eu) методом резистивного испарения
- 6. Измерение толщины напыленного Eu
- 7. Получение оксида Eu с помощью окисления во влажном кислороде
- 8. Проведение измерений ВАХ трёх полученных образцов чистого карбида кремния, карбида кремния с напыленным на нем Европием, карбида кремния с оксидом Европия с помощью туннельной сканирующей микроскопии, в одном диапазоне напряжений.
- 9. Измерение распределения работы выхода с помощью метода модуляции расстояния зонд-образец
- 10. Получение АСМ изображений образцов карбида кремния.
- 11. Вычисление работы выхода электронов для полученных образцов
- 12. Анализ полученных результатов

ПОДГОТОВКА ПОДЛОЖКИ SiC

- Обезжиривание в кипящем растворе (10 мин): H₂O 1 часть, H₂O₂ (10%) 1 часть, H₂SO₄ (конц.) 1 часть
- 2. Ополаскивание в дистилированной воде
- 3. Обработка в HF (10%) при 20°С 30 секунд
- 4. Обработка в кипящем растворе АПР (10 мин): NH OH (конц.) 3 части, H₂O₂ (10%) 3 части, H₂O (дист.) 10 частей
- 5. Ополаскивание в дистилированной воде
- 6. Обработка в HF (10%) при 20°С 30 секунд
- 7. Ополаскивание в дистилированной воде
- Обработка в кипящем растворе (10 мин): H₂O (дист.) - 10 частей, H₂O₂ (10%) - 3 части, HCl (конц.) – 3 части
- 9. Ополаскивание в дистилированной воде
- 10. Обработка в HF (10%) при 20°С 30 секунд
- 11. Ополаскивание в дистилированной воде
- 12. Повторение операций №5 и №6

НАПЫЛЕНИЕ КОНТАКТОВ Ni

Мощность, при которой производилось напыление Р=350 Вт, рабочее напряжение U=621 В, давление в камере p=4,2*10⁻¹ Па, рабочая среда – Аргон. Напыление контактов Ni было произведено при температуре 22°С, время напыления составило 7 минут.

ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ НАПЫЛЕННОГО Ni

$$H = 0,27 \frac{N_3 - N_4}{N_1 - N_2} n$$

где

- N₁ первый отсчет при измерении интервала между полосами; N₂ второй отсчет при измерении интервала между полосами; N₃² первый отсчет при измерении величины изгиба полосы;
- N₄ второй отсчет при измерении величины изгиба полосы;
 n⁴ число интервалов между полосами.

Произведя измерения, получаем N₁=3.33 мкм; N₂=5.04 мкм; N_=4.04 мкм.

Подставив наши данные в формулу (2), получим следующее значение толщины напыленного Ni:

ВЖИГАНИЕ КОНТАКТОВ Win=0,66 мкм.

Вжигание контактов было произведено при температуре 550 °C, в течение 15 секунд, с помощью БТО. Рабочей средой являлся Аргон. В качестве источника нагрева использовалось некогерентное излучение галогеновых ламп.

НАПЫЛЕНИЕ ЕВРОПИЯ

 Напыление Еυ на подложку SiC было произведено в вакуумной установке ВУ-2М методом резистивного испарения. Глубина вакуума составляла 3*10⁻³ Па.
 Образцы подогревались до температуры 200°С для улучшения адгезии.

ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ НАПЫЛЕННОГО Еυ

Произведя необходимые измерения, получим для EU N₁=3.62 мкм; N₂=4 мкм; N₃=3.87 мкм.

В³итоге мы получили следующее значение толщины напыленного Eu:

ИЗМЕРЕНИЕ ВАХ СИСТЕМЫ ЗОНД-ОБРАЗЕЦ И АСМ ИЗОБРАЖЕНИЯ ОБРАЗЦОВ

ВАХ чистого SiC

ВАХ образца с напыленным Eu на SiC

Численные значения ВАХ для трех образцов, которые использовались в расчетах

	Чистый	SiC + Eu	SiC +	
	SiC		Eu_O_	
Напряжение U_ (В)	3,013	7,918	8,238	
Ток І, (нА)	0,1694	2,239	0,3723	
Напряжение U (В)	6,597	9,499	9,259	
Ток І_ (нА)	0,2487	9,956	3,592	

ВАХ образца с напыленным Eu₂O₃

ИЗМЕРЕНИЕ РАСПРЕДЕЛЕНИЯ РАБОТЫ ВЫХОДА С ПОМОЩЬЮ МЕТОДА МОДУЛЯЦИИ РАССТОЯНИЯ ЗОНД-ОБРАЗЕЦ

Для получения информации о распределении работы выхода применяется метод модуляции расстояния зонд-образец Δ*Z*. С этой целью в процессе сканирования к управляющему напряжению на *Z*-электроде сканера добавляется переменное напряжение с внешнего генератора на частоте ω. Тогда напряжение на *Z*-электроде сканера можно представить в виде

$$U = U_0(t) + U_m \sin(wt) \tag{3}$$

Это приводит к тому, что расстояние зонд - образец оказывается промодулированным на частоте ω :

$$\Delta Z(t) = Z_0(t) + \Delta Z_m \sin(wt) \tag{4}$$

В свою очередь, колебания расстояния зонд-образец приводят к тому, что появляется переменная составляющая тока на частоте ω:

$$I_t \cong I_0(V)e^{-\alpha\sqrt{\varphi^*}(\Delta Z_0 + \Delta Z_m \sin(wt))}$$
⁽⁵⁾

_{где}
$$\alpha = \frac{2}{\mathbb{N}}\sqrt{2m}$$

Поскольку амплитуда сигнала модуляции и соответственно амплитуда колебаний туннельного промежутка малы, туннельный ток может быть представлен в виде

$$I_{t} \cong I_{0}(V)e^{-\alpha\sqrt{\varphi}\Delta Z_{0}(1-\alpha\sqrt{\varphi}\Delta Z_{m}\sin(wt))}$$

$$J_{n} = J_{0}\frac{V_{n}}{\Delta z}\exp(-A\Delta Z)$$
(6)
(7)

где J_n это плотность тока n-го образца, J_0 – плотность тока, не зависящая от

расстояния зонд-образец, $j_0 = \frac{e}{2\pi h (\Delta Z)^2}$, $A = \frac{4\pi}{h} \sqrt{2m}$.

Вычислив из уравнений (6) и (7) работу выхода, и узнав ток эмиссии, мы можем проанализировать эти данные и сделать выводы.

Используя ΔZ , можно произвести дальнейшие вычисления эмиссионного тока для трех разных образцов.

В результате наших вычислений, мы получили работу выхода из чистого карбида кремния $\varphi_{SiC}\approx4,7$ эВ, из образца с напыленным Eu $\varphi_{Eu}\approx2,7$ эВ, из образца с напыленным Eu $_2O_3 \varphi_{Eu2O3}\approx2,9$ эВ. Таким образом, из рассмотренных материалов для автоэлектронной эмиссии лучше использовать карбид кремния с напыленным на нем Европием.

Заключение и выводы

- Разработаны основные конструктивные элементы автоэмиссионных структур для высокотемпературной наноэлектроники (на примере автокатода на карбиде кремния).
- Разработан технологический маршрут изготовления автоэмиссионных наноструктур (на примере автокатода на карбиде кремния).
- 3. Выполнен выбор типа острия эмиттера.
- Выполнен пример расчета электрического поля автокатода
- Выполнены экспериментальные исследования влияния редкоземельных металлов и их оксидов на эмиссию карбида кремния.

Спасибо за внимание!

