

- Стерилизацией называют полное уничтожение микроорганизмов и их спор на инструментах, посуде, медикаментах и т.д.
- Дезинфекцией называют полное уничтожение патогенных микроорганизмов на объектах окружающей среды с помощью химических веществ - дезинфектантов

Методы стерилизации и дезинфекции

- ⋆Термическая: паровая и воздушная(сухожаровая).
- ◆Химическая: газовая или химическими растворами
- ◆Радиационная стерилизация применяется в промышленном варианте
- Метод мембранных фильтров применяется для получения небольшого количества стерильных растворов, качество которых может резко ухудшиться при действии других методов стерилизации

Методы стерилизации, разрешенные для применения в ЛПУ.

Тип метода	Метод	Стерилизующий агент	
Физический (термический)	Паровой	Водяной насыщенный пар под избыточным давлением	
	Воздушный	Сухой горячий воздух	
	Инфракрасный	Инфракрасное излучение	
	Гласперленовый	Среда нагретых стеклянных шариков	
Химический	Газовый	Окись этилена или ее смесь с другими компонентами	
		Окись этилена или ее смесь с другими компонентами	
		Окись этилена или ее смесь с другими компонентами	
	Плазменный	Пары перекиси водорода в сочетании с их низкотемпературной плазмой	
	Жидкостный	Растворы химических средств (альдегид-, кислород- и хлорсодержащие)	

Термическая стерилизация

Обжигание и кипячение

Обжигание в настоящее время для стерилизации инструментов не используется. Метод можно применять в домашних условиях при невозможности использования других. Обжигание металлических инструментов проводится открытым пламенем. Обычно на металлический поднос кладут инструмент, наливают небольшое количество этилового спирта и поджигают его.

Кипячение долгое время было основным способом стерилизации инструментов, но в последнее время применяется редко, так как при этом методе достигается температура лишь в 100°С, что недостаточно для уничтожения спороносных бактерий.

Инструменты кипятят в специальных электрических стерилизаторах различной емкости. Инструменты в раскрытом виде (шприцы в разобранном виде) укладывают на сетку и погружают в дистиллированную воду (возможно добавление гидрокарбоната натрия - до 2% раствора).

Обычное время стерилизации - 30 минут с момента закипания.

DGM-200

Компактный переносной автоклав

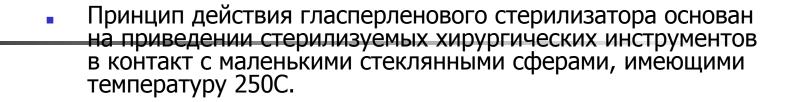
Термическая стерилизация (паровой метод)

Для достижения температур выше точки кипения воды пользуются **автоклавом.** Автоклав представляет собой установку для стерилизации паром под давлением. Температура насыщенного пара зависит от давления. Режимы работы автоклава:

132 °C — 2 атмосферы(2 кгс/см2) — 20 минут — основной режим. Стерилизуют все изделия (стекло, металл, текстиль, КРОМЕ РЕЗИНОВЫХ).

120 °C — 1,1 атмосфера(1,1 кгс/см2) — 45 минут — щадящий режим. (стекло, металл, резиновые изделия, полимерные изделия — согласно паспорту, текстиль)

110 °C — 0,5 атмосферы(0,5 кгс/см2) — 180 мин — особо щадящий режим (нестойкие препараты, питательные среды)



- Нередко удается достичь того же эффекта дробной стерилизацией в текучем паре при 100°С (тиндализация). Жидкость стерилизуется в этом случае при 100°С три дня подряд по 30 мин ежедневно; в промежутках между нагреваниями ее хранят в термостате, для того чтобы споры проросли, а затем вегетативные клетки были уничтожены при следующем нагревании.
- Для многих целей довольствуются частичной стерилизацией, т.е. уничтожением вегетативных форм микроорганизмов. Такого эффекта обычно достигают путем пастеризации выдерживания в течение 5-10 мин при 75 или 80°С. Пастеризацией частично стерилизуют, в частности, молоко, вина. Применяют два метода пастеризации: кратковременное нагревание (20 с при 71,5-74°С) и сильное нагревание (2-5 с при 85-87°С).

Термическая стерилизация (воздушный метод)

- Сухой жар. Стерилизация осуществляется в специальных аппаратах - сухо-жаровых шкафахстерилизаторах. Стерилизация в сухожаровом шкафу происходит при помощи циркуляции внутри него горячего воздуха.
- При стерилизации сухим жаром бактериальные споры переносят более высокие температуры и притом дольше, чем при стерилизации влажным жаром.
 Поэтому жаростойкую стеклянную посуду, порошки, масла и т. п. стерилизуют в течение 1 часа при температуре 180°C.
- Стерилизация в автоклаве и сухожаровом шкафу в настоящее время является главным, наиболее надежным способом стерилизации хирургических инструментов, стеклянной посуды

Термическая стерилизация (гласперленовый метод)

- Стерилизатор предназначен для быстрой стерилизации цельнометаллических, не имеющих полостей, каналов и замковых частей, стоматологических и других медицинских инструментов и приспособлений в среде нагретых до температуры 190-290°С стеклянных шариков при полном погружении в них мелких изделий, а также рабочих частей более крупных изделий.
- Стерилизация инструмента производится в течение очень короткого времени не более 20 секунд. Благодаря такому короткому периоду и неразрушающему воздействию стерилизационных (глассперленовых) шариков на инструмент, негативное влияние высокой температуры практически отсутствует.
- Всего за 5 секунд стерилизует: щипцы, клещи, скальпельдержатели, зонды, шпатели, долота, зубила, алмазы, файлы, боры, корневые элеваторы, расширители, угловые наконечники, иглодержатели, пинцеты, десневые ножницы и т.д.

Термическая стерилизация (инфракрасный метод)

Малогабаритный стерилизатор предназначен для стерилизации стоматологических и микрохирургических инструментов из металлов в условиях госпиталей, поликлиник, больниц и других лечебных и косметологических учреждений. Стерилизация осуществляется инфракрасным мощным кратковременным тепловым воздействием.

Химическая стерилизация (газовый метод)

- В мировой практике встречаются 3 основных метода низкотемпературной стерилизации: газовый этиленоксидный, газовый формальдегидный и плазменный.
- **Газовая стерилизация** осуществляется в специальных герметичных камерах.

Стерилизующим агентом обычно являются: пары формалина (на дно камеры кладут таблетки формальдегида) или окись этилена. Инструменты, уложенные на сетку, считаются стерильными через 6-48 часов (в зависимости от компонентов газовой смеси и температуры в камере).

Отличительной чертой метода является его минимальное отрицательное влияние на качество инструментария, в связи с чем способ используют прежде всего для стерилизации оптических, особо точных и дорогостоящих инструментов.

Химическая стерилизация (газовый метод)

- При стерилизации пищевых продуктов, лекарственных препаратов и разного рода приборов, а также в лабораторной практике оправдало себя применение окиси этилена, которая убивает и вегетативные клетки, и споры, но действует только в том случае, если подвергаемые стерилизации материалы содержат некоторое количество (5-15%) воды. Окись этилена применяют в виде газовой смеси (с N2 или CO2), в которой ее доля составляет от 2 до 50%.
- Этиленоксидный метод обеспечивает самый щадящий температурный режим стерилизации.

Химическая стерилизация (плазменный метод)

- Плазменный метод позволяет создать биоцидную среду на основе водного раствора пероксида водорода, а также низкотемпературной плазмы (ионизированный газ, образующийся при низком давлении).
- Это самый современный метод стерилизации, известный на сегодняшний день. Он позволяет стерилизовать любые медицинские изделия, от полых инструментов до кабелей, электроприборов,к которым в ряде случаев вообще не удается применить ни один из известных методов стерилизации.
- При этом методе после впрыскивания раствора перекиси водорода в стерилизационную камеру включается источник электромагнитного излучения частотой 13,56 Мгц, под воздействием которого одновременно происходит деление одной части молекул H2O2 на две группы (OH-), а другой части на одну гидропероксильную группу (OOH-) и один атом водорода, сопровождающееся выделением видимого и ультрафиолетового излучения. В результате создается биоцидная среда, состоящая из молекул перекиси водорода, свободных радикалов и ультрафиолетового излучения.

Когда необходима плазменная стерилизация? Имплактируемые кипадси Изделия Изделия с длинными из стекла каналами Кыперия Зидоскопы из полимеров инструменты Стерилизация **Электроинструменты** Инструменты Инструменты для электрокоагуляции ингопомальтфо вли Инструменты Инструменты для микрохирургии для кардиохирургии

- Плазма образуется под воздействием сильного электромагнитного излучения в атмосфере паров перекиси водорода. При отключении электромагнитного поля свободные радикалы преобразуются в молекулы воды и кислорода, не оставляя никаких токсичных отходов.
- Минимальное время обработки в плазменном стерилизаторе от 35 минут, рабочая температура 36-60°С. Одно из основных преимуществ этого метода отсутствие токсичных отходов, образуются только кислород и водный пар. Плазменная стерилизация уничтожает все формы и виды микроорганизмов.
- Плазменные стерилизаторы перспективное оборудование, но для большинства российских медицинских учреждений слишком дорогостоящее

Химическая стерилизация (растворами антисептиков)

Стерилизация растворами химических антисептиков, также как лучевая и газовая стерилизация, относится к холодным способам стерилизации и не приводит к затуплению инструментов, в связи с чем применяется для обработки прежде всего режущих хирургических инструментов.

Для стерилизации в основном используют три раствора: тройной раствор, 96° этиловый спирт и 6% перекись водорода. В последнее время для холодной стерилизации оптических инструментов стали применять спиртовой раствор хлоргексидина, первомур и другие.

Для холодной стерилизации инструменты полностью погружают в раскрытом (или разобранном) виде в один из указанных растворов. При замачивании в спирте и тройном растворе инструменты считаются стерильными через 2-3 часа, в перекиси водорода - через 6 часов.

 Данный метод представляет интерес для стерилизации растворов, содержащих лекарственные вещества, изменяющиеся при воздействии высокой температуры.

В качестве антисептиков находят применение: фенол, трикрезол, хинозол, нипагин, нипазол, хлорэтон, меркурофен и цефирол. В литературе имеются также сообщения о применении для этой цели хлоркрезола, хлорбутола, фенилмеркурнитрата, соединений четвертичного аммония (бензалконий, цетримид) и некоторых других веществ.

- Карболовая кислота входит в тройной раствор (раствор Крупенина). Им стерилизуют режущие инструменты и предметы из пластмасс. В нем хранятся простерилизованные иглы, скальпели, корнцанги, полиэтиленовые трубки.
- пред при пред на пред
- Сулема (дихлорид ртути) 1 : 1000, 1 : 3000 Стерилизуются перчатки, дренажи и другие предметы.
- Оксицианид ртути 1: 10000 применяется для стерилизации мочеточниковых катетеров, цистоскопов и других инструментов с оптикой.
- Диоцид препарат ртути, сочетает в себе антисептические и моющие свойства. Некоторые используют для обработки рук хирурга - руки моют в тазу раствором 1 : 3000, 1 : 5000 - 6 мин.
- Этиловый спирт применяется для стерилизации режущих инструментов, резиновых и полиэтиленовых трубок, 96%-м спиртом дубят руки хирурги перед операцией.
- Хотя 70%-й спирт бактерициднее 96%-го, однако спорообразная инфекция не погибает длительное время. Возбудители газовой гангрены и споры сибирской язвы могут сохраняться в спирте в течение нескольких месяцев.
- Для увеличения бактерицидности спиртовых растворов к ним добавляются тимол (1 : 1000), 1%-й раствор бриллиантового зеленого (раствор Баккала), формалин и др.

- Давно используются бактерицидные свойства галогенов. Н. И. Пирогов применял йод спиртовый 2%-й, 5%-й и 10%-й, еще не зная о существовании микроорганизмов. Йод обладает бактерицидным и спороцидным эффектом. Он и ныне не утратил своего значения. Однако чаще используют его комплексные соединения с поверхностью активными веществами, так называемыми. йодофорами, к которым относятся йодонат, йодопиродон, йодолан и др. Они чаще применяются для обработки рук хирурга и операционного поля.
- Соединения хлора издавна используются для дезинфекции (хлорная известь) и стерилизация (гипохлорид натрия, хлорамин и др.).
 Бактерицидность этих препаратов зависит от содержания в них активного хлора. В хлорамине активного хлора 28-29 %, а дихлоризоциануровой кислоте 70-80 %, гипохлориде натрия 9,5 %.
- Перекись водорода (33 % перекись водорода пергидроль) в 3 % и 6 % концентрации используется для стерилизации и дезинфекции Она безвредна для человека.
- Смесь перекиси водорода с муравьиной кислотой, предложенная И. Д. Житнюком и П. А. Мелехоым в 1970 г., была названа первомуром. В процессе приготовления С-4 образуется надмуравьиная кислота она и является действующим началом. Используется для обработки рук хирурга или стерилизации инструментов
- В Чехословакии предложили перстерил для стерилизации резиновых и полиэтиленовых трубок.
- В России выпущен бета-пропиолактон. В концентрации 1: 1000 синегнойная палочка в 2%-м растворе погибает в течение 10 мин. Его добавляют в количестве 0,2% в готовые питательные среды, которые затем инкубируют 2 ч при 37°С. Если оставить среду на ночь, пропиолактон полностью разложится.

Стерилизация ионизирующим излучением

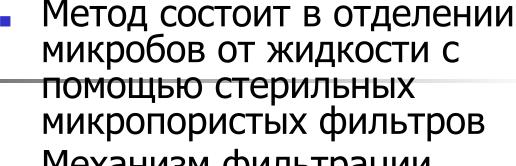
Антимикробная обработка может быть осуществлена с помощью ионизирующего излучения (у-лучи), ультрафиолетовых лучей и ультразвука. Наибольшее применение в наше время получила стерилизация у-лучами.

- Радиационный метод или лучевую стерилизацию γ-лучами, применяют в специальных установках при промышленной стерилизации однократного применения- полимерных шприцев, систем переливания крови, чашек Петри, пипеток и др.хрупких и термолабильных изделий.
- Используются изотопы Co60 и Cs137. Доза проникающей радиации должна быть весьма значительной до 20-25 мкГр, что требует соблюдения особо строгих мер безопасности. В связи с этим лучевая стерилизация проводится в специальных помещениях и является заводским методом стерилизации (непосредственно в стационарах она не производится).
- Стерилизация инструментов и прочих материалов проводится в герметичных упаковках и при целостности последних сохраняется до 5 лет. Герметичная упаковка делает удобными хранение и использование инструментов (необходимо просто вскрыть упаковку). Метод выгоден для стерилизации несложных одноразовых инструментов (шприцы, шовный материал, катетеры, зонды, системы для переливания крови, перчатки и пр.) и получает все более широкое распространение. Во многом это объясняется тем, что при лучевой стерилизации нисколько не теряются свойства стерилизуемых объектов.

Стерилизация ультрафиолетовым излучением

- Источники УФ-излучения (длина волны 260 нм) ртутные кварцевые лампы. Их мощное бактериостатическое действие основано на совпадении спектра испускания лампы и спектра поглощения ДНК микроорганизмов, что может является причиной их гибели при длительной обработке излучением кварцевых ламп,
- при недостаточно мощном действии УФ в прокариотической клетке активизируются процессы световой и темновой репарации, то есть клетка восстанавливается.
- Метод применяется для стерилизации помещений, оборудования в биксах, а также для стерилизации дистиллированной воды.

Бактерицидная камера для хранения стерильных медицинских изделий



Рециркулятор предназначен для обеззараживания воздуха помещений в присутствии и отсутствии людей в процессе принудительной циркуляции воздушного потока через корпус, внутри которого размещены две бактерицидные лампы низкого давления.

• Эффективный стерилизатор позволяющий стерилизовать хирургические инструменты и перевязочные материалы сухим теплом и ультрафиолетовыми лучами. Имеет мощное бактерицидное действие.

Механический метод стерилизации. Бактериальная фильтрация

- Механизм фильтрации объясняется главным образом адсорбцией микробов, происходящей в порах фильтрующих материалов, которые в большинстве случаев заряжены отрицательно.
- В качестве микропористого фильтрующего материала используют каолин, фарфор, бумажно-асбестовую массу, инфузорную землю, коллодий и другие пористые материалы, а также стекло.

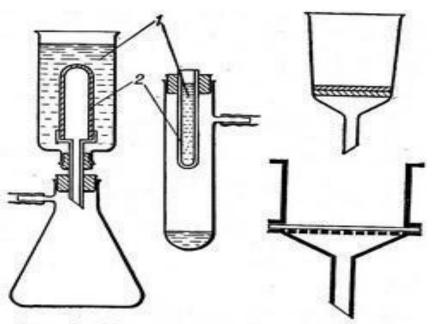


Рис. 1. Монтаж свечей Шамберлана (схема): 1 — фильтруемая жидкость; 2 — фильтровальная свеча.

Рис. 2. Стеклянные фильтры с пластинками из мелкопористого стекла (схема).

Механический метод стерилизации. Бактериальная фильтрация

- Механический метод стерилизации с помощью микропористых фильтров имеет некоторые преимущества по сравнению с методами тепловой стерилизации, когда раствор подвергается воздействию высокой температуры. Для многих растворов термолабильных веществ он по существу является вообще единственным доступным методом стерилизации.
- Широкое применение находят микропористые фильтры на химикофармацевтических заводах и при производстве вакцин и сывороток.

Бактериальные фильтры