Сложные вещества. Бинарные соединения. 8 класс

Цель: уметь составлять формулы неорганических соединений изученных классов; определять валентность и степень окисления элемента в соединениях; называть соединения изученных классов

- Вещества, состоящие из двух элементов, называются бинарными соединениями.
- Валентность число химических связей, которое атом может образовать с другими атомами. Валентность равна числу неспаренных электронов в атоме. Валентность обозначается римскими цифрами.
- Степень окисления число электронов, смещенных к атому (-n) или от атома (+n).

Алгоритм (1) составления формул бинарных соединений

- **соединений** Определить более электроотрицательный элемент по ряду электроотрицательности. Неметалл всегда электроотрицательнее металла.
- Более электроотрицательный элемент пишется в формуле правее, менее элекроотрицательный левее.
- Над более элекроотрицательным элементом ставится его степень окисления, равная № группы 8.
- Над менее электроотрицательным элементом ставится его степень окисления, указанная в названии вещества, или равна + номер группы.
- Модули степеней окисления сносятся крест-накрест.
- Полученные индексы сокращаются, если это нужно.

Пример:

- Даны Si и О.
- О более электроотрицателен.
- SiO
- Степень окисления кислорода равна 6-8=-2 (SiO⁻²)
- 4. Степень окисления кремния равна +4 (Si
 +4O⁻²)
- 5. Si ₂⁺⁴O₄⁻² (сокращаем индексы)
- 6. Si O₂

Алгоритм (2) определения степени окисления элементов в бинарных соединениях

- •Выбрать более электроотрицательный элемент и найти его степень окисления, как номер группы 8. Написать над ним степень окисления.
- •Умножить степень окисления на индекс у этого элемента. Полученное число со знаком «минус» подписать под этим элементом.
- •Такое же число со знаком «+» подписать под другим элементом.
- •Разделить это число на индекс другого элемента. Полученную степень окисления написать над элементом.

Пример:

Дано: SO_{3.}

•Более электроотрицателен кислород (О).

Его степень окисления равна 6-8 = -2. SO⁻² $_3$

•
$$SO_3^{-2}$$
 -6

$$-S_{+6}O_3^{-2}$$

$$-S^{+6}O_3^{-2}$$

Правила систематической номенклатуры бинарных соединений

- •Определить степень окисления элементов в соединении.
- •Взять латинский корень наиболее электроотрицательного элемента и добавить к нему суффикс –ид-.

Элемент	Корень
Н	-гидр-
С	-карб-
N	-нитр-
O	-окс-
F	-фтор-
Si	-силиц-
P	-фосф-
S	-сульф-
CI	-хлор-
Br	-бром-
I	-йод-