Ацетиленовые углеводороды (Алкины)

РАЗМИНКА

СТРОЕНИЕ

ФИЗИЧЕСКИЕ СВОЙСТВА

ХИМИЧЕСКИЕ СВОЙСТВА

ПОЛУЧЕНИЕ

Выберите интересующий Вас раздел, кликните мышкой, чтобы просмотреть его.

Pasmika

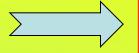
- 1. Какие типы гибридизации углерода Вы знаете?
- 2. Назовите виды ковалентной связи по способу перекрывания.
- 3. Какие бывают виды изомерии?
- 4. Какие типы реакций углеводородов Вы знаете?
- **5.Какие типы реакций характерны для соединений с кратными связями(двойными, тройными)?**

ответы

Pasmmenta otbeth

- 1.Какие типы гибридизации углерода Вы знаете? sp,sp²,sp³
- 2.Назовите виды ковалентной связи по способу перекрывания. сигма,пи-связи 3.Какие бывают виды изомерии?
 - структурная,пространственная
- 4. Какие типы реакций углеводородов Вы знаете? разложение, соединение, замещение, изомеризация, окисление, восстановление
- **5.Какие типы реакций характерны для соединений с кратными связями(двойными, тройными)?**

соединение



отсюда следует...

Что знаем?

Углеводороды АЛКИНЫ

СТРОЕНИЕ

СВОЙСТ ВА

ФИЗИЧЕСКИЕ СВОЙСТВА

<u>С₂Н₂ до С₃Н₁₄ –газы, С₄-С₁₆ –жидкости, С₁₆ –твердые тела</u>

Алкины лучше растворяются в воде, чем алкены и алканы. Также у них выше t°С кипения и плотность.

Посмотреть сравнительную таблицу физических свойств алкинов - здесь

SP-гибридизация,180°, 2 пи - связи,сигма - связи

Перейти к химическим свойствам

Физические свойства некоторых алкинов

Название	Формула	t°пл., °С	t°кип., °С	d ₄ ²⁰
Ацетилен	нс-сн	-80,8	-83,6	0,565 1
Метилацетилен	CH ₃ -C-CH	-102,7	-23,3	0,670 1
Бутин-1	C ₂ H ₅ -C-CH	-122,5	8,5	0,678 2
Бутин-2	CH ₃ -C-C-CH ₃	-32,3	27,0	0,691
Пентин-1	CH ₃ -CH ₂ -CH ₂ -C-CH	-98,0	39,7	0,691
Пентин-2	CH ₃ -CH ₂ -C-C-CH ₃	-101,0	56,1	0,710
3-Метилбутин-1	CH ₃ -CH-C-CH	_	28,0	0,665
	I			
	CH ₃			

¹ При температуре кипения.

² При 0°С.

Химические свойства

Реакции присоединения

$$\mathbf{H} - \mathbf{C} \equiv \mathbf{C} - \mathbf{H} + \mathbf{H}_2 \longrightarrow \mathbf{H} - \mathbf{C} \equiv \mathbf{C} - \mathbf{H}$$

2) Галогенирование

$$\mathbf{H} - \mathbf{C} \equiv \mathbf{C} - \mathbf{H} + \mathbf{Br}_2 \longrightarrow \mathbf{H} - \mathbf{C} \equiv \mathbf{C} - \mathbf{H}$$

3) Гидрогалогенирование

$$H - C \equiv C - H + HBr \longrightarrow H - \stackrel{\mid}{C} \equiv \stackrel{\mid}{C} - H$$

4) Гидратация (реакция Кучерова)

Br H

Химические свойства

Гидратация (реакция Кучерова)

$$H - C \equiv C - H + HOH \longrightarrow H - C \equiv C - H$$

$$H \longrightarrow H$$

$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

Димеризация

$$H-C \equiv C-H + H-C \equiv C-H \longrightarrow$$

Кислотные свойства

HC
$$\equiv$$
 CH + 2[Ag(NH₃)₂]OH \rightarrow AgC \equiv CAg + 4NH₃ + 2H₂O аммиачный раствор ацетиленид серебра оксида серебра

Получение

$$2CH_4$$
 —1500°C \rightarrow HC $\stackrel{\textstyle =}{=}$ CH + $3H_2$ CH₃—CH—CH₂ + 2 KOH — $^{\tiny \text{этанол}}\rightarrow$ CH₃—C $\stackrel{\textstyle =}{=}$ CH + 2KBr + 2H₂O I I Br Br

1,2-дибромпропан

пропин

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + HC \equiv CH$$

<mark>карбид кальция</mark>