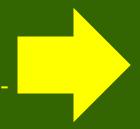
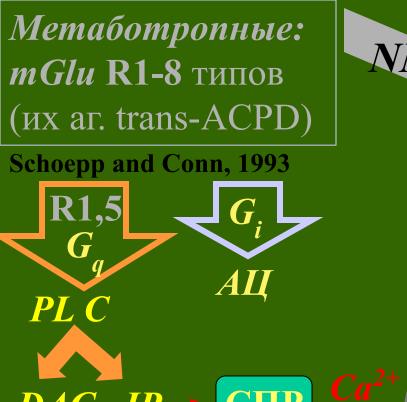

Биохимия ишемического инсульта

Никитин К.В.

Ишемический каскад

- 1. Гипоксия нейронов в зоне "полутени"
- 2. Торможение мембранной Na+/K+ATP-азы
- 3. Аноксическая деполяризация (до -20 мВ)




- 4. Накопление внеклеточного Glu
- **5.** Ca²⁺ перегрузка нейронов
- 6. Активация ферментов (в том числе *NO*-синтазы)
- 7. Развитие оксидантного стресса
- 8. Активация генов апоптоза и гибель нейронов

Глутаматная эксайтотоксичность

Не работает мембранный транспорт $2Na+Glu/K+HCO_3^-$

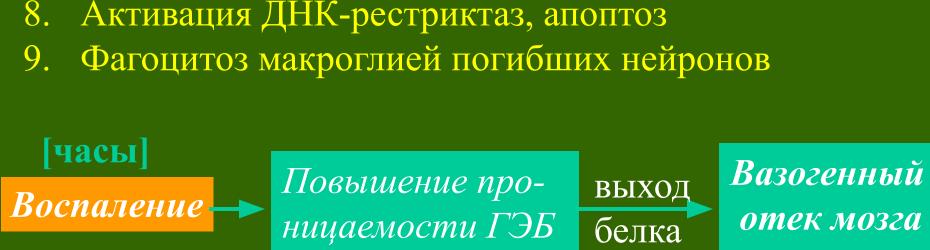
Накопление внеклеточного глутамата

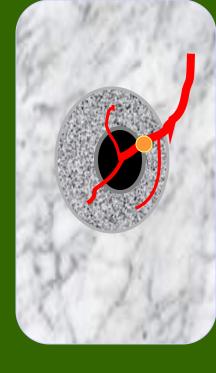
Ионотропные:
NMDA, AMPA и
Каіпате рецепторы

Watkins et al., 1990

РКС Эндокальпанин нуклеазы

Повреждение митохондрий


цитоскелет *Фрагл*


Оксидантный стресс нейронов

... ишемический каскад

- Гипоксия нейронов в зоне "полутени"
- Торможение 3Na⁺/2K⁺ATP-азы
- Аноксическая деполяризация
- Glu эксайтотоксичность
- Накопление внутриклеточного Ca^{2+}
- Активация ферментов (*NO*-синтазы и др.)
- Развитие оксидантного стресса
- Активация ДНК-рестриктаз, апоптоз

Стандартная терапия инсульта

- ✓ Базисная
- Антитромботическая
- Противоотечная

Новые патогенетические подходы

- Блокаторы NMDA-рецепоров (мидантан)
- Блокаторы Ca^{2+} каналов $(Mg^{2+}, нимодипин)$
- Ингибиторы *NO*-синтазы (нитро-L-Arg)
- Антиоксиданты (эмоксипин)