СОВРЕМЕННОЕ СОСТОЯНИЕ И ОПЫТ ИСПОЛЬЗОВАНИЯ ПЕТРОФИЗИЧЕСКОГО ОБЕСПЕЧЕНИЯ МНОГОМЕРНОЙ ИНТЕРПРЕТАЦИИ ДАННЫХ ГИС И КЕРНА

Элланский М.М, Еникеев Б.Н., Кольчицкая Т.Н., Борисов МА, Лопатин А.Ю., Охрименко А.Б.

Проблемы и решения

- 1. Недостаточность полезной информации...
- 2. Необходимость существенного расширения набора характеристик...
- 3. Построение системы интерпретационных моделей...
- 4. Разработка методики комплексной (многомерной) интерпретации...
- 5. Реализация...

Проблемы и решения

1. Недостаточность полезной информации

о продуктивных отложениях, извлекаемой традиционными методами интерпретации скважинных данных, в первую очередь материалов геофизических исследований скважин – ГИС и результатов анализа керна...

Причина

Перспективные отложения усложняются, а методики упрощены

1. Недостаточность полезной информации

Недостаточность извлекаемой из скважинных данных полезной информации о продуктивных отложениях проявляется при решении практически всех задач комплексной интерпретации, начиная с выделения коллекторов в разрезе скважины и кончая изучением степени обводненности продуктивных коллекторов при разработке месторождений нефти и газа

Причина

Перспективные отложения усложняются, а методики упрощены

2. Необходимость существенного расширения набора

характеристик продуктивных отложений, используемых при решении задач комплексной (многомерной) интерпретации скважинных данных.

Причина

Нельзя описать неклассические объекты упрощенными классическими методами

2. Необходимость существенного расширения набора

выбран следующий **оптимальный набор характеристик продуктивных отложений**, включающий, помимо традиционно оцениваемых характеристик (открытой пористости, нефтегазонасыщенности, глинистости —для терригенных пород и содержания литологических компонент матрицы — для карбонатных пород):

Причина

Нельзя описать неклассические объекты упрощенными классическими методами

2. Необходимость существенного расширения набора

- остаточные (не участвующие в фильтрации) водо и нефтегазонасыщенность),
- абсолютная, эффективная и фазовая проницаемость по нефти, газу и воде,
- коэффициент гидрофобности (гидрофобизации),
- текущий и конечный коэффициент вытеснения нефти (газа), причем последний расчленяется на две составляющие, учитывающие, сколько будет вытеснено безводной нефти (безводного газа) и нефти (газа) с водой.

Причина

Нельзя описать неклассические объекты упрощенными классическими методами

устанавливающей связь между измеряемыми по скважинным данным величинами, с одной стороны, и расширенным набором характеристик продуктивных отложений, с другой.

Необходимость

Разработанные на основе этой системы методики комплексной интерпретации данных ГИС и керна, реализованные в виде программ для ЭВМ, с конца 70- ых годов прошлого века неоднократно использовались при решении различных задач поисков, разведки и разработки в различных районах России и бывшего СССР (Западная Сибирь, Якутия, Украина, Узбекистан, Волгоградская область, о-в Сахалин и т.д.), в том числе и при подсчете запасов нефти и газа с утверждением в ГКЗ России ранее – в ГКЗ СССР)

Необходимость

3. Принципиальные отличия созданной системы моделей

1.Все модели являются общими, дедуктивными.

Они настраиваются на конкретные геологические и скважинные условия путем подбора ряда параметров, что можно зачастую сделать на основе априорной информации и сведений о скважинных условиях (пластовая температура, удельные сопротивления пластовой воды и фильтрата бурового раствора), не проводя специальных дорогостоящих и долговременных петрофизических исследований керна.

Необходимость

2.Модели рассматриваемой системы многомерны..

Необходимость

3.Глинистый и карбонатный цемент рассматриваются как двухкомпонентные среды, включающие твердую и поровую компоненты, имеющие специфические физические свойства. Такое представление глинистого и карбонатного цемента позволяет значительно точнее учесть их влияние на геофизические величины и характеристики продуктивных терригенных отложений.

Необходимость

4. Модель электрического сопротивления учитывает различное влияние глинистости на величину удельного сопротивления породы. Если удельное сопротивление двойного ионного слоя больше удельного сопротивления пластовой воды, наличие глинистого материала в породе способствует увеличению ее сопротивления. Если имеет место обратное соотношение удельных сопротивлений пластовой воды и двойного слоя, удельное сопротивление породы с глинистым цементом уменьшается.

Необходимость

5. В рассматриваемой системе моделей впервые в мире производится количественный учет влияния минерализации воды, насыщающей поры продуктивной породы, на ее характеристики: электрическое сопротивление, остаточную водонасыщенность, эффективную и фазовую проницаемость по нефти (газу), воде и др.

Необходимость

6. Впервые в мире производится количественная оценка коэффициента гидрофобизации породы и оценивается его влияние на сопротивление породы, абсолютную, эффективную и фазовую проницаемость и др. характеристики продуктивных пород.

Необходимость

7. Выделяются следующие компоненты характеристик породы:

- а) остаточные водо и нефтегазонасыщенность скелета породы,
- б) капиллярные водо и нефтегазонасыщенность в порах карбонатного цемента,
- в) адсорбционные водо и углеводородонасыщенность в порах глинистого цемента,
- г) "островные" (по С.Д. Пирсону) водо и нефтегазонасыщенность

Необходимость

8. Впервые в мире расчет всех видов проницаемости продуктивных терригенных пород (а также карбонатных пород гранулярного типа) производится не эмпирически, а по единой теоретической формуле, полученной из формулы Козени для проницаемости идеального грунта

Необходимость

Разработанные на основе этой системы методики комплексной интерпретации данных ГИС и керна, реализованные в виде программ для ЭВМ, с конца 70- ых годов прошлого века неоднократно использовались при решении различных задач поисков, разведки и разработки в различных районах России и бывшего СССР (Западная Сибирь, Якутия, Украина, Узбекистан, Волгоградская область, о-в Сахалин и т.д.), в том числе и при подсчете запасов нефти и газа с утверждением в ГКЗ России ранее – в ГКЗ СССР)

Необходимость


4. Разработка методики комплексной (многомерной) интерпретации

скважинных данных, позволяющей

- а) оценивать расширенный набор характеристик продуктивных отложений,
- б) используя этот набор, повысить эффективность решения "старых" задач комплексной интерпретации скважинных данных
- в) поставить и решать "новые" задачи комплексной интерпретации скважинных данных,
- что позволит существенно увеличить объем полезной информации о продуктивных отложениях, извлекаемый из скважинных данных.

Модель без методики неконструктивна

Проблемы и решения

4. Разработка методики комплексной (многомерной) интерпретации

Методика, о которой идет речь, была реализована:

- .Программы "Петрофизика", "Фиеста-2000", "Чайна" и "Ретро-2000" для изучения типичных терригенных отложений по данным ГИС.
- .Программа "Карбонаты-2000" для изучения сложных карбонатных отложений по данным ГИС.
- .Программы "Керн" и "Керн –ГИС" для оценки подсчетных и других характеристик продуктивных отложений с учетом данных керна и ГИС.

Модель без методики неконструктивна

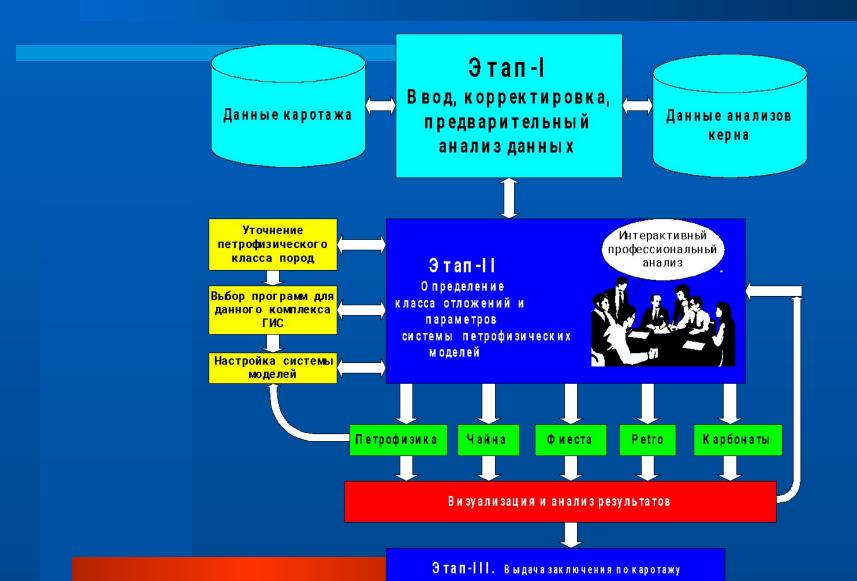
для персональных компьютеров, реализующих разработанную методику интерпретации данных ГИС

Наши возможности

Без теории интерпретация мертва, без моделей она суха

Программа "Петрофизика" предназначена для построения петрофизической модели продуктивного пласта с типичными терригенными отложениями, имеющими либо только глинистый цемент, либо глинистый и карбонатный цемент.

Модель без методики неконструктивна


Для типичных терригенных отложений справедливо следующее

соотношение: $K_{\text{п.ск.}} = K_{\text{н. карб}} + K_{\text{карб}}$, где $K_{\text{п.ск.}}$ пористость скелета породы, $K_{\text{п}}$ - открытая пористость породы, $K_{\text{гл}}$, $K_{\text{карб}}$ – объмная глинистость и объемная карбонатность породы.

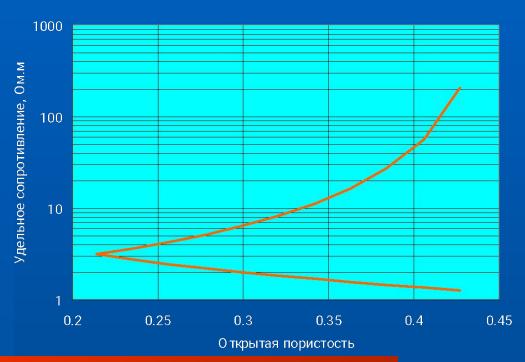
Петрофизическая модель продуктивного пласта, не имеющая мировых аналогов, строится в виде таблицы, каждая строка которой описывает свойства одной из градаций продуктивного пласта: от самого лучшего коллектора – так называемого скелета породы, до наиболее уплотненной породы, сохраняющей жесткий скелет, полностью заполненный цементом.

Модель без методики неконструктивна

Проблемы и решения

Изучение петрофизической модели продуктивного пласта дает возможность создать петрофизическую основу комплексной интерпретации скважинных данных и, в первую очередь, данных ГИС. В программе "Петрофизика" можно задавать три варианта состава цемента:

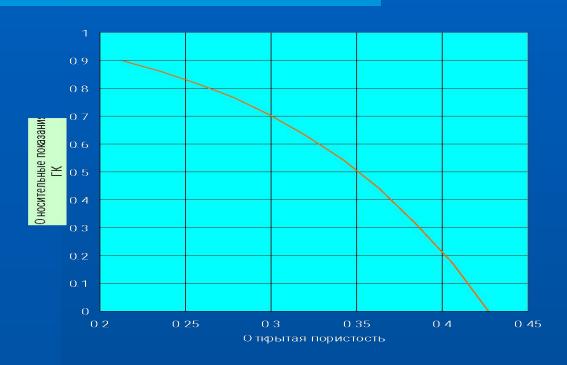
- 1) глинистый цемент,
- 2) карбонатный цемент,
- 3)"смесь" глинистого и карбонатного цемента
- . Кроме того, можно задавать различную степень гидрофобности продуктивных пород.


Модель без методики неконструктивна

С помощью программы "Петрофизика" можно строить любые двухмерные взаимосвязи между характеристиками, включенными в петрофизическую модель продуктивного пласта.

Можно построить 18 взаимосвязи каждой геофизической характеристикой и открытой пористостью, глинистостью и нефтегазонасыщенностью.

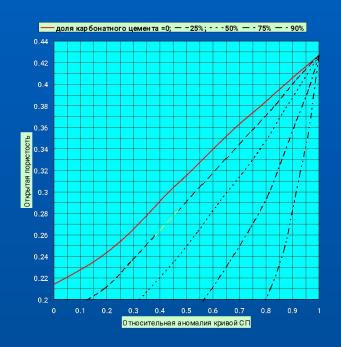
Таким путем можно построить, например, взаимосвязь любой характеристики с коэффициентом продуктивности.


Модель без методики неконструктивна

Модель без методики неконструктивна

Модель без методики неконструктивна

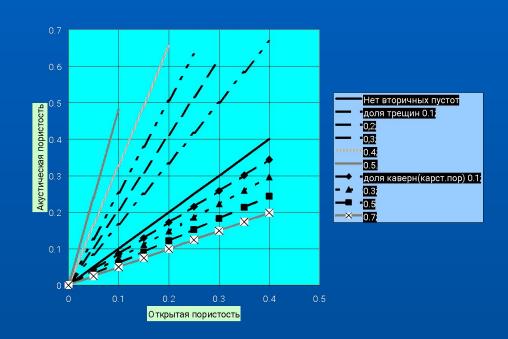
Модель без методики неконструктивна


Модель без методики неконструктивна

- Программы "Фиеста-2000", "Чайна" и "Ретро-2000" осуществляют комплексную интерпретацию данных ГИС применительно к типичным терригенным отложениям.
- "Фиеста-2000" может "работать" с различными комплексами ГИС от максимально возможного до минимально необходимого.
- "Чайна" является частным вариантом предыдущей программы, настроенной на условия крупнейшего газового месторождения Китая Кла-2, коллекторы которого содержат в среднем 50% глинистого цемента и 50% карбонатного цемента, а плотные породы в основном состоят из карбонатного материала при 10-20% глинистого материала.
- "Ретро-2000" ориентирована на "старый" комплекс ГИС, включающий методы сопротивлений, собственных потенциалов СП и естественной радиоактивности ГК.

Модель без методики неконструктивна

Модель без методики неконструктивна



Модель без методики неконструктивна

Программа "Карбонаты –2000" может быть использована для двух ситуаций: 1) имеется полный стандартный комплекс ГИС, включающий методы сопротивления, естественной радиоактивности, нейтронный или нейтронный—гамма, акустический и плотностной гамма-гамма метод и

2) имеется неполный комплекс, отличающийся от первого отсутствием плотностного гамма-гамма метода.

Модель без методики неконструктивна

Модель без методики неконструктивна

В результате интерпретации данных ГИС выделяются следующие типы пород:

- a) **соль** ("акустическая" пористость существенно выше "нейтронной + плотностной", пористость по сопротивлению ниже двух других),
- б) порода **трещинного типа** (акустическая пористость выше "нейтронной + плотностной", пористость по сопротивлению выше двух других),
- в) порода **порового типа** (все три оценки пористости близки, либо пористость по сопротивлению отличается в ту или другую сторону от близких друг другу оценок нейтронной и акустической пористости),
- г) порода **порово-кавернового типа** (пористость по сопротивлению близка к "нейтронной + плотностной", "нейтронная + плотностная" пористость существенно выше акустической пористости),
- д) порода **порово-карстового типа** (оценки "нейтронной + плотностной" и акустической пористости "ведут себя" так же, как и в предыдущем случае, а пористость по сопротивлению выше нейтронной).

Модель без методики неконструктивна

Проблемы и решения

Для каждого типа пород оцениваются остаточные водо и нефтегазонасыщенность. После этого рассчитываются коэффициент гидрофобизации, абсолютная и фазовая проницаемость пород по воде и нефти (газу), коэффициент продуктивности нефти (газа), водонефтяной или газоводяной фактор, конечный коэффициент вытеснения. В программе "Карбонаты-2000" предусмотрена возможность прогноза двух конечных коэффициентов вытеснения: для динамического вытеснения нефти водой и для ее капиллярного замещения водой.

Модель без методики неконструктивна