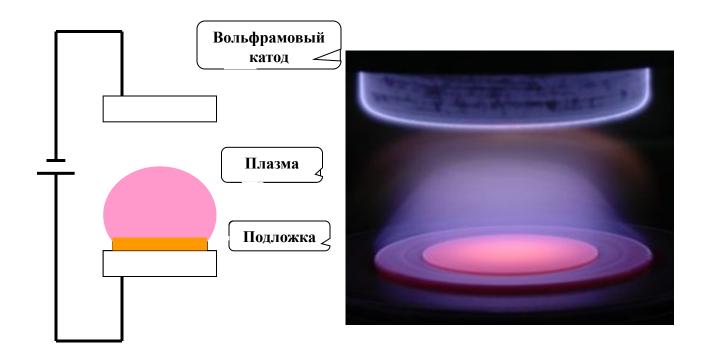


ОПТИЧЕСК РАЗРЯДА

Золотухин А.А., Московский государ физический

Устинов А.О., Волков А.П., Обра ственный университет им. М. факультет Е-mail: zolotukh@po

ПИЯ ПЛАЗМЫ Й СМЕСИ


зцов А.Н. В. Ломоносова lly.phys.msu.ru

Введение

Газофазное химическое осаждение (ГФХО) является одним из наиболее эффективных методов получения различных углеродных материалов. Фазовый состав, структурные особенности и другие свойства ГФХО пленок определяются условиями активации газовой смеси. В данной работе представлены результаты in-situ исследования процесса ГФХО углеродных материалов методом оптической эмиссионной спектроскопии (ОЭС).

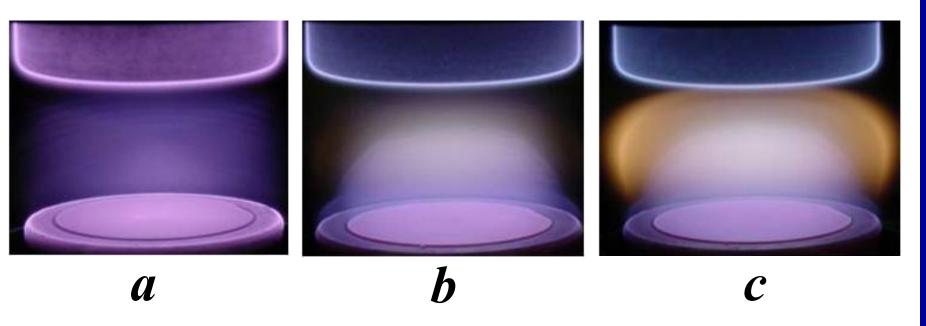
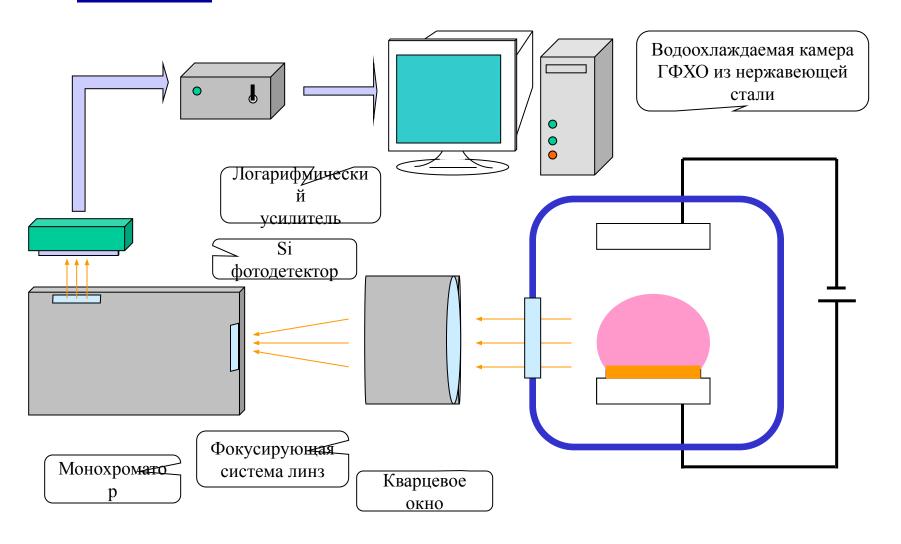
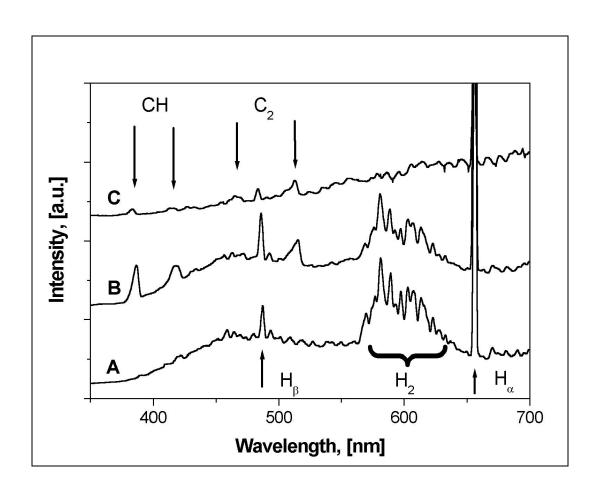

ОЭС плазмы газового разряда регистрировались при варьировании основных параметров ГФХО процесса, включая давление и состав газовой смеси. Состав, структурные характеристики полученных углеродных пленок изучались методами спектроскопии комбинационного рассеяния света и электронной микроскопии. Полученные данные были проанализированы с целью выявления корреляций между параметрами процесса ГФХО, ОЭС плазмы и характеристиками углеродных пленок, а также для определения механизмов формирования пленочных углеродных материалов различного фазового состава.

Схема процесса ГФХО


Тип материала углеродной	Температура подложки в	Концентрац	Давление газа,
пленки	процессе роста	ия метана, %	Торр
алмаз	850-900	0.5-2	60-90
нано-алмаз	900-1000	2-5	60-100
графитоподобный	1000-1100	5-10	60-100
сажа	1100-1250	свыше 15	50-100

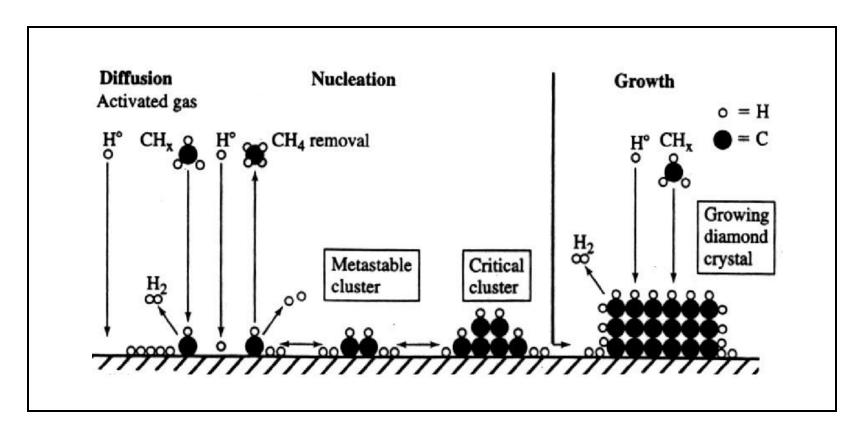
Газовый разряд в смеси СН₄:Н₂



Характерный вид положительного столба в процессе ГФХО для чистого водорода (а) и водородо-метановой смеси при 8 % (b) и 25 % (c) $\rm CH_4$. Давление газа 80 Торр. В качестве подложки использовалась Si пластина диаметром 50 мм, помещенная на анод установки. Напряжение разряда 650 B (a), 750 B (b), 850 B (c). Ток разряда 7 A (a), 6 A (b), 5 A (c).

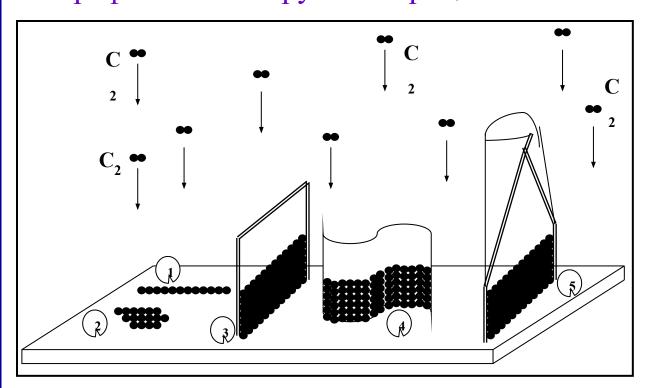
Установка для регистрации ОЭС.

ОЭС плазмы в смеси СН₄:Н₂



Типичные ОЭС для чистого водорода (A), и для водородометановой смеси при 8 % (B) и 25 % (C) СН₄. Давление газа 80 Торр, напряжение разряда 650 B (A), 750 B (B), 850 B (C). Ток разряда 7 A (A), 6 A (B), 5 A (C).

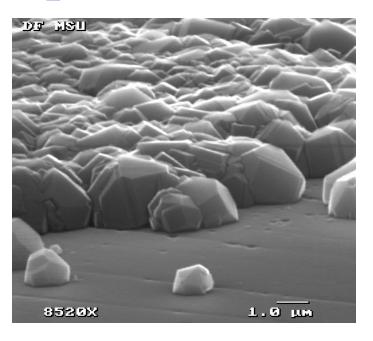
Механизм осаждения алмазмых пленок


Нуклеация и рост алмазных пленок

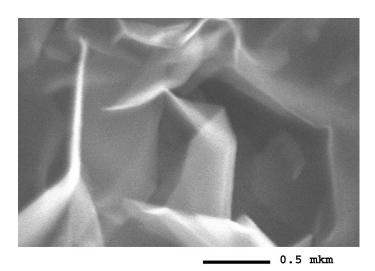
[Bradley A. Fox chapter Diamond Films, THIN FILM TECHNOLOGY HANDBOOK]

Осаждение графитоподобных пленок

☐ Предлагаемый механизм образования нанокристаллического графита и нанотрубок в процессе ГФХО


Осаждаясь, димеры образуют на поверхности преимущественно атомные цепочки (1), а не кластеры (2) благодаря ориентации свободных связей. Происходит образование небольших кристаллитов (3) графита И Формирование нанотрубки может быть инициировано изгибанием графитного листа в начальной стадии (4) или же при достижении некоторой критической высоты.

Морфология поверхности


углеродных пленок

A

C

B

РЭМ изображения углеродной наноструктурированной пленки (A), (B) и поликристаллической алмазной пленки (C), полученных осаждением из газовой фазы.

Выводы

- \square В плазме разряда наряду с рекомбинационными линиями атомарного и молекулярного водорода были зарегистрированы линии, соответствующие СН и C_2 .
- □ Интенсивность линий, соответствующих димерам С₂ существенно возрастает с увеличением концентрации метана. При концентрациях метана выше 15 % наблюдается интенсивное желто-оранжевое свечение периферийных областей плазмы. Спектральные характеристики этого свечения соответствуют нагретому до высокой температуры материалу, что позволяет предположить конденсацию углерода непосредственно в газовой фазе.
- Наличие углеродных димеров в газовой фазе определяет механизм образования углеродных пленок на подложке. При высокой концентрации димеров С₂ происходит преимущественный рост графитоподобной фазы, при низких концентрациях образуется поликристаллическая алмазная пленка.

Благодарность

Работа была выполнена при поддержке гранта INTAS No 01-254.