Памяти Б.А. Волкова

Фотоэлектрические эффекты в легированных полупроводниках на основе теллурида свинца при воздействии лазерного терагерцового излучения

<u>Д.Р.Хохлов¹</u>, А.В.Галеева¹, Д.Е.Долженко¹, Л.И.Рябова¹, А.В. Никорич², С.Д.Ганичев³, С.Н.Данилов³, В.В.Бельков^{3,4}

- ¹ Московский государственный университет им. М.В.Ломоносова, Москва, Россия
- ² Институт прикладной физики АН Молдовы, Кишинев, Молдова
- 3 Физический факультет, университет Регенсбурга, Германия
- ⁴ Физико-технический институт им. А.Ф.Иоффе РАН, Санкт-Петербург, Россия

План доклада

- 1. Нелегированные сплавы на основе теллурида свинца
- 2. Легирование теллурида свинца индием
 - А) Стабилизация уровня Ферми
 - Б) Задержанная фотопроводимость
 - В) Примесные метастабильные состояния
- - 3. Фотопроводимость в сплавах Pb_{1-x}Sn_xTe(In) под действием терагерцовых лазерных ИМПУЛЬСОВ
- 4. Монополярный фотоэлектромагнитный эффект в $Pb_{1-x}Sn_{x}Te(In)$
- 5. Выводы

1. Нелегированные сплавы на основе теллурида свинца

PbTe: узкощелевой полупроводник:

- 1. Кубическая гранецентрированная решетка типа Na⁺Cl⁻
- 2. Прямая щель E_g = 190 meV при T = 0 К в L-точке зоны Бриллюэна
- З. Высокая диэлектрическая проницаемость *є* ~ 10³.
- 4. Малые эффективные массы *m* ~ 10⁻²
 m_e.

Отклонение от стехиометрии ~ 10^{-3} . Как правило: $n_{,p}$ ~ 10^{18} - 10^{19} см⁻³

Стабилизация уровня Ферми в сплавах Pb_{1-x}Sn_xTe(In).

Задержанная фотопроводимость

Температурная зависимость сопротивления, измеренная в темноте (1-4) и при инфракрасной подсветке (1'-4') в сплавах с x = 0.22 (1, 1'), 0.25 (2, 2'), 0.27 (3, 3') и 0.29 (4, 4')

Кинетика фотопроводимости

Примесные метастабильные состояния

Примесные метастабильные состояния ответственны за появление ряда сильных эффектов:

- Задержанная фотопроводимость в терагерцовом спектральном диапазоне
- СВЧ-стимуляция квантовой эффективности до 10²
- Усиленный диамагнитный отклик, составляющий до 1% от идеального
- Рост эффективной диэлектрической проницаемости до 10⁵ при ИК-подсветке
- Гигантское отрицательное магнитосопротивление с амплитудой до 10⁶

Важное замечание

 $E_{\lambda} = (241, 176) \mu m < E_{a}$

За фотопроводимость отвечает возбуждение с примесных метастабильных состояний. 3. Фотопроводимость PbSnTe(In) под действием терагерцового лазерного излучения

- Длина волны лазера: 90, 148, 280, 496 µm
- Длительность импульса: 100 ns
- Мощность в импульсе: до 30 kW
- Температура образца: 4.2 300 К

Образцы

Температурная зависимость удельного сопротивления и концентрации электронов

Температурная зависимость подвижности электронов

Кинетика фотопроводимости

Временной профиль лазерного импульса и кинетика фотопроводимости при различных температурах

Механизмы фотопроводимости

- Отрицательная фотопроводимость: разогрев электронного газа, изменение подвижности электронов
- Положительная фотопроводимость: генерация неравновесных электронов с метастабильных электронных состояний, изменение концентрации свободных электронов

Зависимость амплитуды фотоотклика от длины волны

N_{κB}=8.7 10⁻²⁴ c⁻¹

Заметный фотоотклик наблюдается вплоть до длины волны 496 мкм, что более чем в два раза выше, чем предыдущий рекорд для фотонных приемников – 220 мкм для одноосно деформированного Ge(Ga)

Линейная экстраполяция квантовой эффективности к нулевому значению фотоотклика дает красную границу фотоэффекта E_{кр}=0!

4. Фотоэлектромагнитный эффект в PbSnTe(In)

Схема эксперимента

Эксперимент

Изменение сигнала при прохождении лазерного импульса для двух полярностей магнитного поля (Н- и Н+ = 0.195 Тл) при температурах 4.2 и 25 К.

Особенности

- При 4.2 К имеется задержка сигнала относительно импульса – около 30 нс
- 2. При 25 К знак эффекта меняется на противоположный
- З. Задержка сигнала относительно импульса при 25 К – около 100-150 нс
- 4. Эффект не зависит от поляризации излучения
- 5. Эффект исчезает при направлении магнитного поля вдоль контактов

Зависимость от магнитного поля

Зависимости максимальной амплитуды сигнала от магнитного поля при температурах 4.2 и 25 К.

Зависимость от мощности импульса

Зависимость максимальной амплитуды сигнала от приведенной мощности лазерного импульса. Н = 0.195 Тл.

Возможная интерпретация

Юн

Отличия от классического ФЭМ эффекта

- Энергия кванта много меньше Е_g,
 эффект монополярный
- 2. Кинетика эффекта не повторяет кинетику фотопроводимости
- З. Природа эффекта при 4.2 К и 25 К, видимо, несколько различается

Механизм эффекта

- При 4.2 К градиент концентрации неравновесных электронов, диффузия неравновесных электронов от поверхности
- При 25 К градиент подвижности
 электронов при неизменной концентрации, диффузия более быстрых электронов из объема к поверхности

Оценка диэлектрической проницаемости

Если время задержки сигнала при 4.2 К соответствует максвелловскому времени релаксации, то $T = \epsilon \epsilon_0 \rho$ откуда $\epsilon \sim 10^7$

Зависимость от длины волны

Выводы

Обнаружен ряд новых фотоэлектрических эффектов в Pb_{1-x}Sn_xTe(In)) под действием терагерцового лазерного излучения:

- Положительная задержанная фотопроводимость при T < 10 К, связанная с фотовозбуждением с метастабильных примесных состояний,
- Отрицательная незадержанная фотопроводимость при T ~ 25 К, связанная с разогревом электронного газа
- Красная граница фотоэффекта, по крайней мере, выше 496 мкм. Экстраполяция к нулевому сигналу дает **E** = 0! Обнаружен монополярный фотоэлектромагнитный эффект
- Оценка диэлектрической проницаемости дает значение 10⁷ в условиях фотовозбуждения
- Для фотоэлектромагнитного эффекта экстраполяция к нулевому сигналу также дает E_{кр}=0!