Космические тайны воды

«Вода, у тебя нет ни вкуса, ни цвета, ни запаха, тебя невозможно описать, тобой наслаждаться, не ведая, что ты такое. Нельзя сказать, что ты необходима для жизни: ты сама жизнь. Ты наполняешь нас радостью, которую не объяснишь нашими чувствами. С тобой возвращаются к нам силы, с которыми мы уже простились. По твоей милости в нас вновь начинают бурлить высохшие родники нашего сердца. Ты самое большое богатство на свете.»

Антуан де Сент-Экзюпери

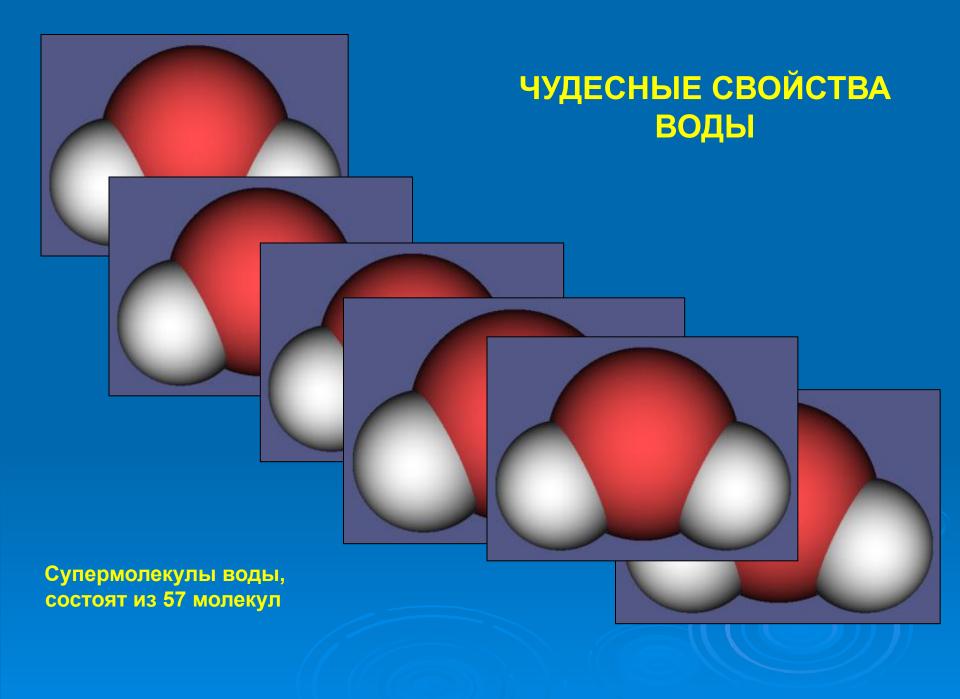
Учебноисследовательская работа КРИСТАЛЛЫ БЕНТЛИ

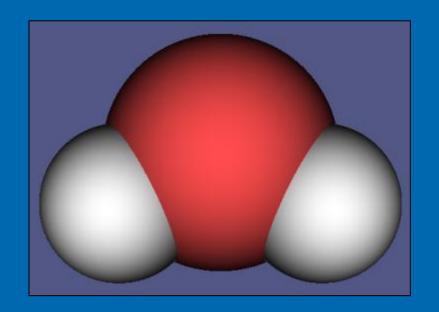
Работу выполнила ученица 9 класса Михеева Алена Руководитель Кайгородова А.В.

Светло-пушистая, Снежинка белая, Какая чистая, Какая смелая!... Под ветром веющим Дрожит, взметается, На нем, лелеющим, Светло качается.

Бальмонт К.

ГИПОТЕЗА


□ Исследование состоит в предположении, если вода по своим физическим и химическим свойствам является уникальным природным веществом, то она обладает уникальными природными свойствами и феноменальной способностью изменяться.


Цель исследования

 Изучить, как в природе рождаются снежинки и почему вода ведет себя иначе, чем другие жидкие субстанции.

Задачи исследования

- Изучить литературу по теме исследования.
- Проанализировать полученные данные и описать уникальные свойства воды, формы и классификацию снежинок.
- На основании данных, полученных в результате теоретического анализа научной литературы, экспериментов и наблюдений в природе сделать выводы.

Молекула воды H₂0

Три состояния воды

Кристаллы Бентли

- В 1550 году архиепископ Олаф Магнус из шведского города Упсала первым наблюдал снежинки невооруженным глазом.
 Его рисунки свидетельствуют о том, что он не заметил их шестиконечной симметрии.
- А вот немецкий астроном Иоганн Кеплер сразу обратил внимание на эту главную особенность.
- В 1635 году из-под пера французского философа и ученого Рене Декарта появились заметки и чертежи, посвященные формам снежинок. Современные специалисты удивлены тем, что на этих рисунках встречается редкий тип, представляющий шестигранный кристалл, на двух концах которого шестигранные пластинки.
- С изобретением микроскопа в середине XУII века представления о формах снежинок расширились. Английский естествоиспытатель Роберт Гук, установивший клеточное строение тканей, пришел к выводу, что геометрия снежинок основана на шестиконечной симметрии.

- □. В историю исследования снежинок внесли свою лепту и японцы. Несмотря на строгую изоляцию Японии в XIX веке, голландское стекло микроскоп проник и в эту далекую страну. Феодальный правитель Страны восходящего солнца Тосицура Онаками Дои с присущим японцам чувством точности и хрупкой красоты оставил 97 рисунков «снежных цветков». Сделанные в 1839 году, они с полным правом считаются самыми точными изображениями снежинок до открытия микрофотографии. А в университете Саппоро исследуют снежинки к в наше время.
- □ Но особенно формами снежинок ученые заинтересовались благодаря Уилсону Бентли фермеру из американского штата Вермонт. Он родился в 1865 году и в пятнадцатилетнем возрасте получил в подарок от матери микроскоп. На улице мальчик принялся рассматривать снежинки, которые поразили его разнообразием и красотой форм. На протяжении трех зим он пытался зарисовывать снежные кристаллики, но они были слишком сложны к быстро таяли. Фотоаппарат, прикрепленный к микроскопу, разрешил эту трудность, и целых полвека Бентли фотографировал снежинки, делая иногда до 300 снимков за зиму.

В 1898 году в журнале «Харперс мэгэзин» он опубликовал статью о снежных кристаллах, и с тех пор слава о нем разнеслась по всему миру. Подборка его самых удачных работ — около двух с половиной тысяч снимков

Причины мистического разнообразия даже одного типа снежных кристаллов зависят от множества параметров. Японский профессор Укисиро Накая установил: снег — единственное вещество, которое кристаллизуется в столь разнообразных формах. Ученый выделил семь основных типов снежинок: игловидные, столбчатые, плоские, которые подразделяются на гексагонально-плоские и звездообразные, комбинация из столбчатых к плоских кристаллов, столбчатый кристалл с расширенными боковыми ветвями, обындевевшие.

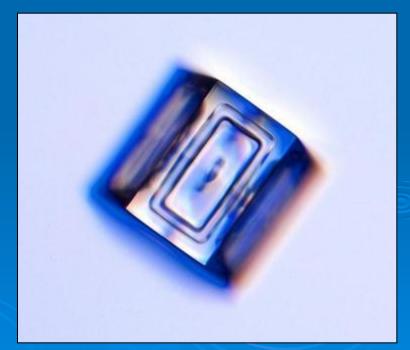
Японский профессор установил, что ледяные кристаллики очень быстро меняются при изменениях температуры, даже если она повышается на несколько градусов, один тип кристалла превращается в другой, а после этого снова преобразуется в предыдущий. Причем новая форма сохраняет внутри прежнюю структуру.

В лаборатории университета Саппоро ученые разработали метод и устройство для искусственного получения снежных кристаллов. Первые результаты появились в 1936 году, а к концу 1994 года японцы искусственным путем уже воспроизводили любой тип снежинок. Но по сей день, никто из ученых мужей не сумел объяснить, почему молекулы воды при различных температурах кристаллизуются в разные формы.

Так что Уилсон Бентли, вероятно, с радостью бы узнал, что за полвека интенсивных исследований снежные кристаллы, к которым он некогда привлек внимание публики, по-прежнему хранят загадку бесконечного многообразия своих форм.

ФОРМЫ СНЕЖИНОК

Древообразные снежинки



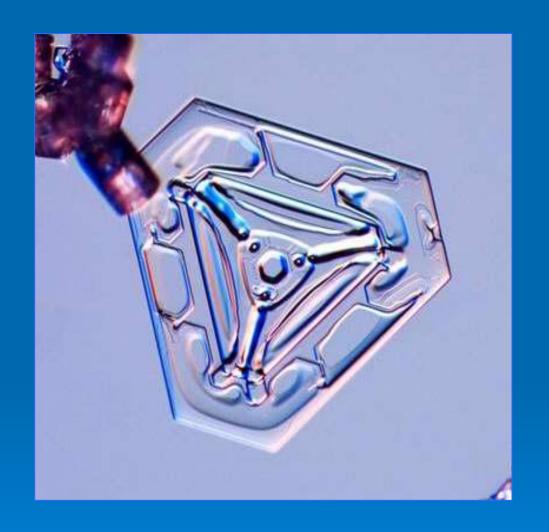
Древообразные снежинки



Продолговатые снежинки



Плоские снежинки



Плоские снежинки

Плоские снежинки

«Треугольные» снежинки

Природные условия формирования снежинок

Форма	Температура	Влажность воздуха
Шестиугольные	0 – 3 C	Менее 30 %
Папоротникоподобные	0 – 3 C	Выше 30 %
Древовидные	0 – 3 C	Около 30 %
Игольчатые	- 3 – 5 C	Около 30 %
Полые шестиугольные призмы	- 5 – 8 C	Около 30 %
Пластинки с симметричными украшениями	- 8 – 12 C - 16 – 24 C	Около 30 %
Древовидные кристаллы	- 12 – 16 C	Около 30 %
Полые призмы	Ниже - 24 C	Около 30 %

Международная классификация выпадающих снежных кристаллов

В 1951 году Международная Комиссия по Снегу и Льду приняла классификацию твёрдых осадков. Согласно ей все снежные кристаллы можно разделить на следующие группы: звёздчатые дендриты, пластинки, столбцы, иглы, пространственные дендриты, столбцы с наконечником и неправильные формы. К ним добавились еще три вида обледеневших осадков: мелкая снежная крупка, ледяная крупка, град и изморозь.

Звёздчатые дендриты – кристалл или другое образование, имеющее древовидную, ветвящуюся структуру. Они имеют шесть симметричных основных вет и множество расположенных в произвольном порядке ответвлений. Их размер – 5 мг и более в диаметре, как правило, они плоские и тонкие – всего 0.1 мм.

Пластинки – множество ледяных ребер как будто делят лопасти снежинок на сектора. Как и звёздчатые дендриты, они плоские и тонкие.

Столбики. Хотя плоские, пластинчатые снежинки больше притягивают взгляд, тем не менее самой распространенной формой снежных кристаллов является столбик и колонна. Такие полые столбики могут быть шестигранными, в виде карандаша, заостренные на концах в виде конуса.

Иглы – столбчатые кристаллы, выросшие длинными и тонкими. Иногда внутри них сохраняются полости, а иногда концы расщепляются на несколько веточек.

Пространственные дендриты. Очень интересные конфигурации получаются, когда плоские или столбчатые кристаллики срастаются или спрессовываются, образ объемные структуры, где каждая веточка расположена в своей плоскости.

Столбики с наконечниками. Изначально такие кристаллы имеют столбчатую форму, но в результате некоторых процессов меняют направление роста, превращаясь в пластинки. Такое может произойти, если, кристалл заносит ветром в зону с другой температурой.

Кристаллы неправильной формы. На долю снежинки может выпасть немало приключений, она может попасть в зону турбулентности и потерять в ней некоторые из своих веточек или разломаться совсем. Обычно таких «покалеченных» снежинок много в сыром снеге, т.е. при относительно высокой температуре, особенно при сильном ветре.

Магическая сила водяных кристаллов Масару Эмото

- 1. Кристалл дистиллированной воды, не подвергнутый никакому воздействию.
- 2. Ключевая вода.
- 3. Антарктический лёд.
- 4. Так выглядит кристалл воды, прослушавшей «Пастораль» Бетховена.

- 5. Кристалл, образовавшийся после прослушивания тяжелого металлического рока.
- 6. Кристалл после воздействия слов «Ты дурак», очень похож на кристалл после действия тяжелого рока.
- 7. Слово «Ангел».
- 8. Слово «Дьявол».

- 9. Вода получила просьбу «Сделать это».
- 10. Вода получила приказ «Сделай это».
- 11. Слова «Ты надоел мне. Я убью тебя».
- 12. Вода получала электромагнитные излучения любви и благодарности.

Мои наблюдения

- 1. Черная бархатная бумага или бархатная ткань;
- 2. Пульверизатор с водой;
- 3. Фотоаппарат

Необходимые погодные условия: мороз от - 20С до – 25С <u>Ход опыта:</u>

Возьмем черную бархатную бумагу (чтобы снежинки зацеплялись своими "лучиками"), из пульверизатора буду брызгать мелкими капельками воды на бумагу. На морозном воздухе (на улице – 22С) капельки должны застывать и превращаться в снежинки. Чтобы капельки успели выкристаллизоваться брызгать на бумагу необходимо на расстоянии полуметра

ФОТОЗАРИСОВКИ

Заключение

Для достижения поставленной цели мы проанализировали большое количество информации из разных источников. Согласны с выводами многих ученых, что в капле воды из пруда не меньше разнообразия, чем в лесу.

Издали снег поражает строгой величественной красотой.

Вблизи отдельная снежинка предстает как крошечная драгоценность геометрической формы – живое свидетельство сложности и красоты моделей, создаваемых природой. И это чудо природы можно получить опытным путем или наблюдать в виде кристаллической изморози невооруженным глазом.

Проведённые нами исследования помогли доказать, что вода - самое распространённое и удивительное вещество. Каждая отдельная снежинка летает по своему пути, имеет свою историю и оставляет кристаллический след в путешествии сквозь вьюгу ...

Одно определенно – вода еще долго не даст покоя исследователям. Удивительно, что столь прозрачное вещество так трудно рассмотреть во всех деталях.

#