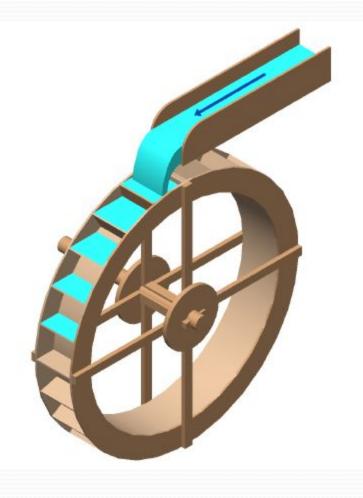
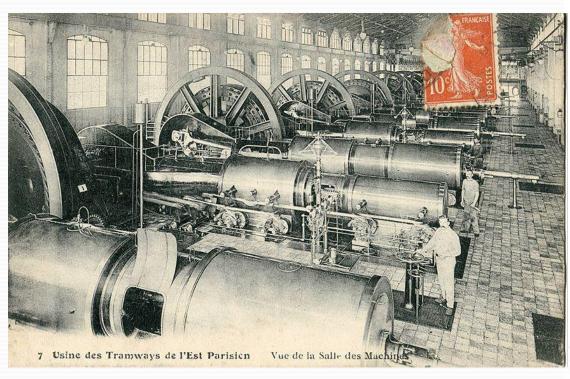

Конференция «Потребление энергетических ресурсов и их использование для производства электрической энергии»

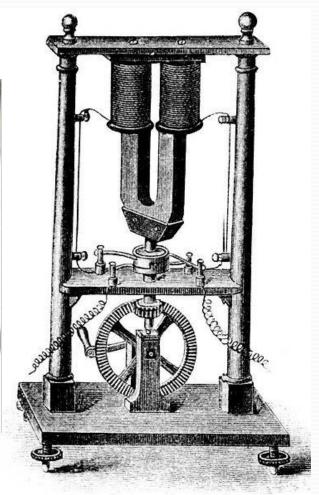
Вода. День 2

Вода как вещество








Гидроэлектростанции. Развитие

Мех. энергия --> Электрическая

Гидроэлектростанции. Развитие

- использование возобновляемой энергии.
- очень дешевая электроэнергия.
- работа не сопровождается вредными выбросами в атмосферу.
- быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

- затопление пахотных земель
- строительство ведется там, где есть большие запасы энергии воды
- на горных реках опасны изза высокой сейсмичности районов

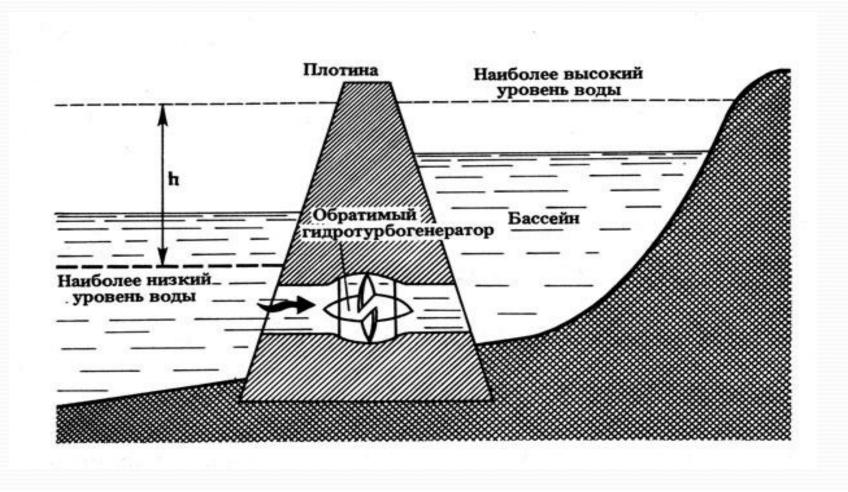
.

Крупнейшие ГЭС в мире

Наименование	Мощность, ГВт	Среднегодовая выработка, млрд кВт·ч	География
Три ущелья	22,40	100,00	р. Янцзы, г. Сандоупин, Китай
Итайпу	14,00	100,00	р. Парана, г. Фос-ду- Игуасу, Бразилия/Парагвай
Гури	10,30	40,00	р. Карони, Венесуэла
Черчилл-Фолс	5,43	35,00	р. Черчилл, Канада
Тукуруи	8,30	21,00	р. Токантинс, Бразилия

Крупнейшие ГЭС в России

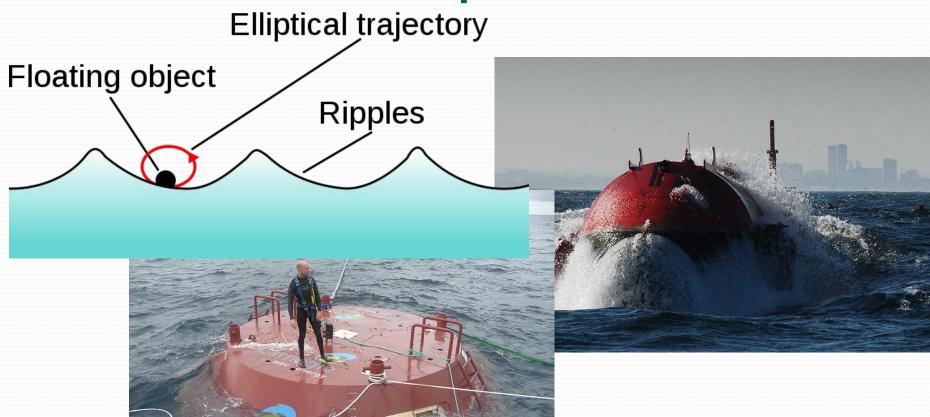
Наименован ие	Мощность, ГВт	Среднегодова я выработка, млрд кВт·ч	География
Саяно- Шушенская ГЭС	2,56 (6,40 []]	23,50 []]	р. Енисей, г. Саяногорск
Красноярска я ГЭС	6,00	20,40	р. Енисей, г. Дивногорск
Братская ГЭС	4,52	22,60	р. Ангара, г. Братск
Усть- Илимская ГЭС	3,84	21,70	р. Ангара, г. Усть-Илимск
Богучанская ГЭС	3,00	17,60	р. Ангара, г. Кодинск


Энергия океана

Название	Источник	Оценка потенциальных ресурсов	Оценка себестоимости производства энергии
Энергия волн	волны в океане, прибрежные волны	8 — 80 тыс. ТВт/год	90-137 долл./МВт
Энергия приливов	приливы моря и океана	200 ТВт/год	н/д
Энергия течений	сильные морские течения	0,8- 5 ТВт / год	56-168 долл./МВт
Энергия температурного градиента морской воды	разница температуры воды у поверхности и на глубине океана	10 тыс. МВт / год	н/д

Энергия приливов/отливов

Энергия приливов/отливов



- Экологичность
- низкая себестоимость производства энергии

Недостатки

- высокая стоимость строительства
- изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов.

Волновая энергия

- Источник неисчерпаем
- Низкая себестоимость производства энергии
- Энергия генерируется постоянно
- Экологичность

Недостатки

• С точки зрения социальноэкономических проблем, волновая энергетика может привести к вытеснению рыбаков из продуктивных рыбопромышленных районов и может представлять опасность для безопасного плавания.

Крупнейшие станции в

мире

ㅁ

Device	Country of Origin	Capture Method Category	Year Announced
Wave Dragon	Denmark	Surface-following attenuator	2003
Anaconda Wave Energy Converter	UK	Surface-following attenuator	2008
AquaBuOY	Ireland-Canada-Sco tland	Buoy	2003
FlanSea (Flanders Electricity from the Sea)	Belgium	Buoy	2010
SeaRaser	UK	Buoy	2008
Wavebob	Ireland	Buoy	1999
Lysekil Project	Sweden	Buoy	2002
Cycloidal Wave Energy Converter	US	submerged wave-cancelling turbine	2011

Энергия дождя



- Источник неисчерпаем
- Низкая себестоимость производства энергии
- Экологичность
- Выгодна в в местах с плохим климатом и в условиях дефицита других источников энергии.

Недостатки

- Слишком малое кол-во энергии
- Энергия генерируется только во время дождя

Энергия из водорода?

- Источник неисчерпаем
- Экологичность
- Сравнительная безопасность

Недостатки

- Слишком малое кол-во энергии
- Высокая себестоимость

Вода. Общие выводы.

Преимущества

- Экологичность
- Низкая себестоимость
- Неисчерпаемость
- Темпы развития

Недостатки

• Не может существовать автономно

Конференция «Потребление энергетических ресурсов и их использование для производства электрической энергии»

Вода. День 2

Спасибо за внимание!