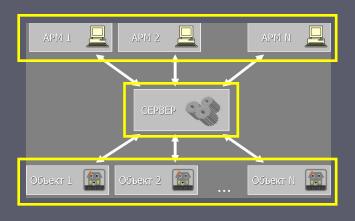

### Учет потребления энергоресурсов:

- Горячая и холодная вода
- Отопление
- Электроэнергия
- Интеграция с другими системами


### Функции:

- Поквартирный и общедомовой коммерческий учет потребления
- Контроль функционально-технического состояния оборудования учета и сетей передачи данных
- Контроль качества услуг предоставляемых населению
- Учет потерь энергоресурсов, оценка качества эксплуатации инженерных сетей

### Структура системы:



### Состав системы:



- Первичные преобразователи и приемоконтрольное оборудование, размещенное на объекте учета
- Сервер системы
- Автоматизированные рабочие места пользователей системы
- Линии связи

### Объект учета



## Оснащение объекта



#### Оборудование объекта:

- Первичные преобразователи: теплосчетчики, приборы учета расхода горячей и холодной воды, газа и электроэнергии
- Приемо-контрольное оборудование: интерфейсные блоки БПДД-232/485, блоки тарифицированных счетчиков БТС
- Оборудование обработки данных: Домовой регистратор, блок БКД
- Информационно-питающая линия

Расширение возможностей системы достигается путем подключения к информационно-питающей линии дополнительных блоков с необходимой функциональностью. Среди возможностей системы:

- Диспетчеризация лифтового оборудования
- Охранно-пожарная сигнализация, контроль доступа
- Контроль и управление освещением, вентиляцией, системами водоудаления
- Организация диспетчерской голосовой связи с помещениями объекта

## Функционированиє системы



Объединяющим элементом является информационно-питающая линия (ИПЛ), представляющая собой коаксиальный кабель соединяющий между собой все блоки системы. Подключение блоков выполняется по топологии «Общая шина».

ИПЛ используется как для информационного обмена так и для подачи питающего напряжения к подключенным к ней блокам.

Домовой регистратор, представляет собой промышленный компьютер функционирующий под управлением операционной системы «Linux». Управляющая программа домового регистратора в соответствии с алгоритмом опроса проводит периодическое считывание данных с первичных преобразователей, предварительную обработку поступивших данных и формирует информационные пакеты для отправки на сервер системы.

### Приборы учета тепла и электроэнергии



Для подключения к системе пригодны приборы учета тепла и электроэнергии, оборудованные внешним информационным интерфейсом RS-232 или RS-485. Для подключения используется интерфейсный блок БПДД-232/485 преобразующий сигналы шины СОС-95 в сигналы соответствующих интерфейсов.

В виду того, что разные типы приборов учета поддерживают различные способы считывания информации (протоколы), то каждый новый тип требует написания специального модуля в управляющей программе домового регистратора.

### Приборы учета тепла и электроэнергии



В настоящий момент система поддерживает следующие типы приборов учета:

Тепловычислители:

```
«ИВК-59(1)», «ВИС.Т-1», «ВИС.Т-НС»,
```

«Combimetr-QII», «TЭM-05M1»,

«Взлет TCPB-010, TCPB-02х», «ТБН КМ-5»,

«Эско-Т», «РТМ-02», «Таран-Т», «Тэрм-02»,

«Практика», «Асвега SA-94».

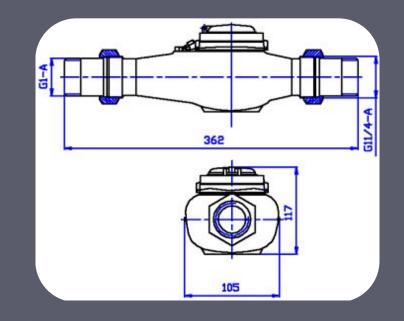
Счетчики электрической энергии: «ЭЭ8003/2»,

«ЭЭ8005/12», «ЦЭ6822», «ЦЭ6823», «ЦЭ6827»,

«ЦЭ6850».

Предприятие ведет непрерывную работу по расширению списка поддерживаемых приборов.




Блок БПДД-232/485

# Приборы учета расхода холодной и горячей воды

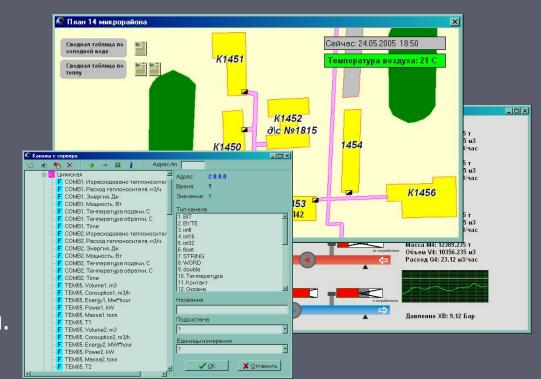


Для подключения счетчиков расхода холодной и горячей воды с импульсным выходом (СХВ-хх-Д, СГВ-хх-Д, СВМ-хх-Д и подобные) применяются блоки тарифицированных счетчиков БТС и БТС-2.

Каждый из них позволяет подключить 5 и 8 счетчиков соответственно. Блоки обеспечивают подсчет импульсов расхода по четырем независимым тарифным зонам для каждого входного канала.



Автоматизированное рабочее место


диспетчера (АРМ)

Для отображения текущих и архивных данных используется персональный компьютер с установленной на нем SCADA-системой «LanMon-3».

Программа содержит большие возможности для отображения состояния и управления оборудованием различных систем.

#### Основные возможности:

- графическое отображение текущих значений контролируемых параметров
- встроенные подсистемы графиков (trends) и сигналов (alarms)
- развитые средства формирования исторических отчетов
- модули взаимодействия с устройствами H323 (передача речи), встроенный драйвер протокола OPC DA



### Контроль качества услуг

Применение системы создает предпосылки создания автоматизированной системы инструментального контроля качества услуг, предоставляемых населению.

Ведение непрерывной базы данных значений контролируемых параметров, позволяет объективно судить о продолжительности периодов отключений водо- и электроснабжения, несоблюдении температурного графика и прочих отклонениях в функционировании инженерных систем здания.





