Независимое расследование по теме «Жесткость воды и её влияние на моющие средства».

- Цели занятия:
- Развить умения: выделять существенные признаки и свойства объектов
- Классифицировать факты, делать выводы
- Формировать практические навыки работы с веществами и химическим оборудованием
- Развивать познавательные интересы, коммуникативные качества, уверенность в своих силах, настойчивость, умение действовать самостоятельно
- Воспитывать культуру умственного труда

• «Ни одна наука не нуждается в эксперименте в такой степени, как химия. Её основные законы, теории и выводы опираются на факты. Поэтому постоянный контроль опытом необходим».

М. Фарадей

• «Свои способности, человек может узнать только попытавшись приложить их.»

Сенека Младший

Историческая справка.

- Аристотель считал воду одним из «элементов» мироздания.
- Российский геохимик, академик Александр Евгеньевич Ферсман назвал воду самым важным «минералом» на Земле.
- Гимном этому веществу стали слова писателя Антуана Сент-Экзюпери:
 - «Вода у тебя нет цвета, ни вкуса, ни запаха, тебя невозможно описать, тобою наслаждаются, не ведая, что ты такое. Нельзя сказать, что ты необходима для жизни. Ты сама жизнь».
- На Земле имеется громадное количество воды, человек непосредственно может использовать не более 0,05% общего количества воды.
- Воды морей и океанов содержат в среднем 3,5% растворённых веществ.
- Это соли хлориды и сульфаты магния, которые находятся в морской воде в виде ионов.
- Морская вода содержит 35г соли на 1 литр. Морская вода содержит растворённые газы и органические соединения.
- Речные воды содержат ионы, нейтральные молекулы, взвешенные частицы, солей в них гораздо меньше.

Состав природных вод (% по массе).

Морская вода			Речная вода				
Катионы		Анионы		Катионы		Анионы	
Na ⁺	1,08	Cl ⁻	1,94	Ca ²⁺	0,0013	HCO ₃	0,0059
Mg^{2+}	0,13	SO ₄ ²⁻	0,27	Na ⁺	0,0005	SO ₄ ²⁻	0,0012
Ca ²⁺	0,04	SO ₄ ²⁻	0,27	Mg ²⁺	0,0003	Cl ⁻	0,0006
K ⁺	0,04	HCO ₃	0,01	K ⁺	0,0002	S^{2-}	0,0004

Пресная природная вода

Жёсткая вода непригодна:


- Для питания паровых котлов
- Для применения в химической технологии
- В производстве керамике, бетонных смесей, затворение глин
- Приводит к нарушению работ теплосетей

В жёсткой воде:

- Мыло не образует пену
- Плохо развариваются овощи
- Не заваривается чай

Жёсткость воды определяется содержанием в ней растворенных солей:

- Гидрокарбонатов
- Сульфатов
- Хлоридов кальция, магния, железа (II)

Методы определения жёсткости воды

- Карбонатная жёсткость (временная) [Жв.] метод кислотно-основного титрования
- Общая жёсткость [Жо.] метод комплексонометрии
- Некарбонатная (постоянная) [Жп.] определяют по разности между
 Ж общая - Ж временная
- Жв. (постоянная) = Ж _{общая} Ж _{временная}

<u>Инструкция по проведению</u> следственного эксперимента

Ваши опыты были успешны и не причинили вред вашему здоровью – <u>ПОМНИТЕ:</u>

Совет 1:

Работай строго по инструктивной карточке!

Совет 2:

Не пробуй вещества на вкус!

Совет 3:

Используй точно указанное в инструкции количество вещества!

Совет 4:

Работай аккуратно с растворами кислот (щелочей)!

<u>Совет 5:</u>

Окончив работу – наведи порядок на рабочем столе!

<u>Совет 6:</u>

Тщательно вымой руки! Проветрите помещение!

<u>Следственный эксперимент</u>

Уимический анализ

І гр. Водопроводная вода

II гр. Родниковая вода

III гр. Снеговая (талая) вода

IV гр. Прудовая вода (водоём «Копань», район ОАО «Биосинтез»)

V гр. Морская вода

VI гр. Вода и моющие средства

VII гр. Общая жёсткость воды

Инструкция по проведению следственного эксперимента

- №1 Определение жесткости водопроводной воды
- №2 Определение жесткости родниковой воды
- №3 Определение жесткости снеговой (талой) воды
- №4 Определение жесткости воды водоёма (Копань район ОАО «Биосинтез»)
- №5 Определение жесткости морской (искусственной) воды
- №6 Вода и МС (мыло, стиральный порошок)
- №7 Общая жёсткость воды (водопроводная, морская)

Инструкция по созданию морской воды и определению жёсткости морской воды Состав морской воды

К. А.

	К.	A.	% по
			массе
NaCl	1,08	1,94	3,02
MgSO ₄	0,13	0,27	0,4
CaSO ₄	0,04	0,27	0,31
KHCO ₃	0,04	0,01	0,05

Определение жёсткости морской воды

1. Рассчитать весовые части солей морской воды

3,02: 0,4: 0,31: 0,05

60,4: 8 : 6,2 : 1

 $MgSO_4 - 8r$ весовые части:

 $CaSO_4 - 6r$ NaCl - 60r

КНСО₃ – 1г

2. Отмерить (взвесить) на весах соли:

NaCI

MgSO₄

CaSO

KHCO

- Отмерить воду дист. объёмом 100 см³
- Растворить соли в воде дист., тщательно перемешать
- Добавить в морскую воду 3 капли индикатора метилоранж
- 6. Оттитровать стандартным раствором соляной кислоты (С=0,1 моль/л) до изменения окраски индикатора
- Определить объём израсходованной кислоты. Анализ проводим 3 раза!
- 8. Оформить отчёт в таблицу «Определение жёсткости воды»

Определение жёсткости воды

Be	личина	Значение	Примечание
1.	Номер пробы воды		
2.	Объём мерной колбы,		
	CM ³		
3.	Объём раствора		
=	соляной кислоты,		
	израсходованный на		
	титрование, см ³		
	№1 — №2 —		
	N22 - N23 -		
4.	Средний объём		
	раствора HCl, см ³		
5.	Карбонатная		
	жёсткость воды,		
	ммоль/л		
6.	Расчёт результатов		
7.	Анализ, выводы		

Примечание:

<u>Количество (ммоль) израсходованное на титрование соляной кислоты</u> равно <u>количеству (ммоль) солей,</u> обуславливающих карбонатную жёсткость, содержащихся в титруемом объёме воды.

За единицу карбонатной жёсткости воды принят один ммоль солей содержащихся в 1л воды.

Вычисления:

Карбонатная жёсткость: Жк. = C(HCI)*V(HCI)*1000 V (H O)

V (H2O) – объём воды, взятый на титрование 1000 – 1л воды, в котором по ГОСТУ определяют жёсткость воды.

Жёсткость воды

Мягкая ≤4

Средне жёсткая 4-8

Жёсткая 8—12

Очень жёсткая ≥12

Инструкция по проведению химического анализа

Влияние жёсткости воды на МС

- Цель: выяснить действия различной воды на моющие средства
- A) мыло
- Б) стиральный порошок
 - проанализировать информацию о жёсткост воды

<u>Информация к размышлению:</u>

- Жёсткость воды влияет на пенообразование МС (мыла, стирального порошка).
- Оценить это качество воды можно по количеству пены, появляющиеся при встряхивании образцов воды с добавкой раствора моющего средства (мыла. стирального порошка).

Ход работы

Оборудование:

Штатив с одинаковыми пробирками, стеклянные палочки, ложки, линейка, резинки аптечные, часы песочные 1мин.

Реактивы:

мыло, стиральный порошок

вода: водопроводная

родниковая

снеговая

прудовая

морская

Порядок действий

Пронумерованные пробирки заполните на 1/5 их объёма исследуемой водой.

Добавьте в каждую пробирку:

- а) кусочек мыла размером с горошину
- б) 1 ложечку стирального порошка
- Тщательно перемешайте стеклянными палочками и закройте пробками.
- Соединив пробирки вместе аптечной резинкой, одновременно встряхивайте в течение 1 минуты.
- Измерьте линейкой высоту пены в каждой пробирке и оформите отчёт в таблицу.

Жесткость воды и моющие средства

Объект изучения	Высота пены, см		
Вода	Мыло	Стиральный порошок	
1. Водопроводная			
2. Родниковая			
3. Снеговая (талая)			
4. Прудовая (Копань)			
5. Морская			
6. Общая жёсткость			
7. Влияние жёсткости воды на МС			

- Примечание: чтобы мыло было удобно резать на равные части, его следует размягчить:
- кусочек мыла следует обернуть мокрой салфеткой, поместить на сутки в по лиэтиленовый пакет.
- □ Нарезать кусочки одинакового размера.

Анализ результатов жёсткости воды по количеству пены.

Химическая экспертиза (в хим. лабораториях)

Установлено:

$$\mathbf{X}_{\mathsf{воды}} =$$

Общая жёсткость воды

- Определяется Жо. воды методом комплексонометрии

 титриметрический метод, основан на реакциях
 взаимодействия определяемых ионов с некоторыми
 органическими реагентами. Ионы металлов
 практически мгновенно взаимодействуют с
 комплексонами с образованием растворимых
 малодиссоциированных соединений постоянного
 состава.
- Комплексон (III) (трилон Б) со многими катионами образует прочные растворимые в воде внутрикомплексные соли:
- Трилон Б определяют ионы: Ca ²⁺, Mg ²⁺, Br ²⁺, Cu ²⁺ , Zn ²⁺, Ni ²⁺, Al ³⁺, Cr ³⁺, Co ³⁺.
- Грамм эквивалент металла, независимо от степени окисления связывает один грамм – эквивалент комплексона.

Порядок действий

- Исследуемую воду объём 10 мл поместить в колбу.
- Анализируемую воду подщелочить до pH=10, прибавляя аммонийную буферную смесь.
- Добавить индикатор хромоген чёрный.
- Титровать трилоном Б (титр установлен ранее).
- Появление синей окраски раствора указывает на окончание реакции.
- Определить Жо. Воды по формуле.
- Ж=Сп (Na [H2Tr])*V (Na2 [H2Tr])*1000/V(H2O)
- Где Cn (Na [H2Tr]) нормальность трилона Б

V (H2O) – объём анализируемой воды

V (Na2 [H2Tr]) – объём трилона Б, пошедший на титрование

С (трилон Б)= 0,1 моль/л

Общая жёсткость воды

- (Метод комплексонометрии) титриметрический метод, основан на реакциях взаимодействия определяемых ионов с некоторыми органическими реагентами.
- Ионы металлов практически мгновенно взаимодействуют с комплексонами с образованием растворимых мало диссоциированных соединений постоянного состава.
- Комплексон III (трилон Б) со многими катионами образует прочные растворимые в воде внутрикомплексные соли. Трилон Б определяют ионы Са²⁺, Mg²⁺, Co³⁺, Cu²⁺, Zn²⁺, Ni²⁺, Al³⁺, Cr³⁺, PO₄³⁻.
- Грамм эквивалент металла, независимо от степени окисления, связывает один грамм эквивалент комплексона.
- Общая жёсткость воды показывает содержание мили/моль гидрокарбонатов, сульфатов и хлоридов кальция и магния в 1л воды.

Ход работы

- **Цель**: определить Жо. воды водопроводной
- Оборудование: бюретка, колба, химический стакан
- Реактивы: вода водопроводная, аммонийная буферная смесь (100мл 20% раствора NH₄CI и 100мл 20% раствора NH₃), индикатор хромоген чёрный, трилон Б (0,1н)
- Отмерить объём исследуемой воды (водопроводной)
 100см³ или 100мл
- Добавить 5см³ аммонийной буферной смеси
- 5-7 капель спиртового индикатора хромогена чёрного
- Титровать трилоном Б (комплексон III) (по каплям встряхивать)
- Появление синей окраски раствора указывает на окончание реакции.

Отчёт

Название	Значение	Примечание
1. Объём исследуемой воды, см ³		
2. Объём трилона Б, израсходованный на титрование, см ³ Титрование №1 №2 №2		
3. Средний объём трилона Б, см ³		
4. Общая жёсткость воды		
5. Расчёты		

- **Wo=Cn** (Na $[H_2Tr]$)*V (Na₂ $[H_2Tr]$)*1000/V(H_2O)
- Где Cn (Na [H₂Tr]) нормальность трилона Б
- V (Н₂О) объём анализируемой воды
- V (Na₂[H₂Tr]) объём трилона Б, пошедший на титрирование
- или Жо = $C(1/2 Na_2H_2Tr)*V(Na_2H_2Tr)*1000$
 - _ _ 100
- <mark>•</mark> Жо [ммоль/л]
- Расход трилона больше 5см³ на 100см³
- 1. Суммарное содержание кальция, магния с (1/2 Ca ²⁺, Mg ²⁺) больше 0,5 ммоль/л. титрование повторить, взяв меньший объём воды.
- 2. Нечёткое уменьшение окраски раствора в точке эквивалентности указывает на присутствие в воде катионов Cu ²⁺, Zn ²⁺, Mn ²⁺.

 «Опыт - единственная верный путь спрашивать природу и слышать ответ в её лаборатории»

Д. И. Менделеев