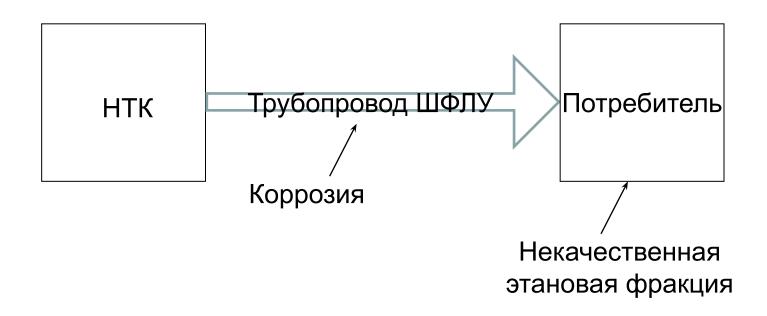


Блок очистки этанизированной ШФЛУ от углекислого газа.

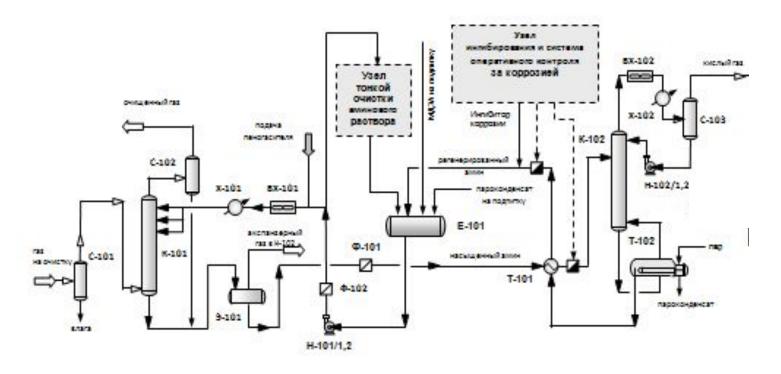
Докладчик: Шеин А.О.


г. Краснодар, 27 сентября 2011 года

СОДЕРЖАНИЕ

Необходимость очистки этанизированной ШФЛУ от CO ₂ 3
Установка очистки этановой фракции от CO ₂
Принципиальная технологическая схема блока очистки этанизированной ШФЛУ по варианту 1
5
Принципиальная технологическая схема блока очистки этанизированной ШФЛУ по варианту 2
6
Особенности предлагаемой технологической схемы
Капитальные и эксплуатационные затраты, потери углеводородов
Заключение

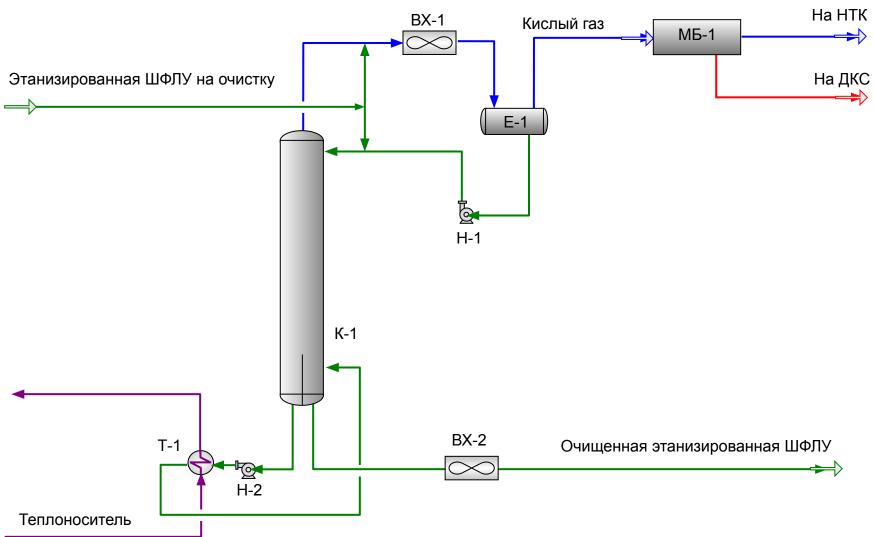
НЕОБХОДИМОСТЬ ОЧИСТКИ ЭТАНИЗИРОВАННОЙ ШФЛУ ОТ CO₂



Возможные пути решения проблемы очистки этанизированной ШФЛУ от CO₂

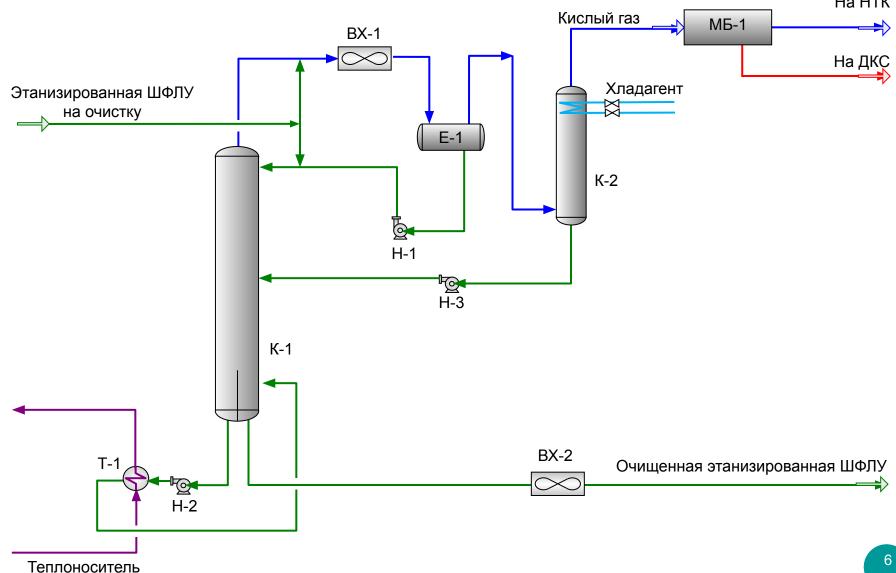
- 1. Аминовая очистка нефтяного газа;
- 2. Выработка этановой фракции и ее аминовая очистка;
- 3. Очистка этанизированной ШФЛУ с помощью ректификации.

УСТАНОВКА АМИНОВОЙ ОЧИСТКИ ЭТАНОВОЙ ФРАКЦИИ ОТ СО2



Недостатки способа очистки этановой фракции от СО, раствором амимна:

- 1. Высокие капитальные и эксплуатационные затраты;
- 2. Необходимость ингибирования коррозии на установке очистки;
- 3. Необходимость осушки очищенной этановой фракции.


ПРИНЦИПИАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ СХЕМА БЛОКА ОЧИСТКИ ЭТАНИЗИРОВАННОЙ ШФЛУ ПО ВАРИАНТУ 1

ПРИНЦИПИАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ СХЕМА БЛОКА ОЧИСТКИ ЭТАНИЗИРОВАННОЙ ШФЛУ ПО ВАРИАНТУ **2**

ОСОБЕННОСТИ ПРЕДЛАГАЕМОЙ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ

- 1. Процесс осуществляется с помощью ректификации и использования мембранного блока;
- 2. Не используются специальные материалы и реагенты;
- 3. Возможность отказаться от расхода топливного газа;
- 4. Малый срок реализации проекта, возможность постепенного дооборудования (переход от варианта 1 к варианту 2).

КАПИТАЛЬНЫЕ И ЭКСПЛУАТАЦИОННЫЕ ЗАТРАТЫ, потери углеводородов

Наименование	Аминовая	Вариант 1	Вариант 2
показателей	очистка		
	ШФЛУ		
Основное			
технологическое	3,1	2,4	2,5
оборудование, млн	٥, ١	۷,4	2,0
руб на 1 т/ч сырья			
Электроэнергия,	4.05	4.00	4.40
кВт·ч/т сырья	4,85	4,06	4,12
Топливный газ, м ³ /т	146	не	не
сырья	14,6	требуется	требуется
Потери с углекислым			
газом, % мас:			
- этана	не	3	2
	определено		
- углеводородов	не	0,09	0,006
C _{3+Bhille}	определено		
Срок реализации	около 2 лет	около 8 месяцев	

ЗАКЛЮЧЕНИЕ

- Рекомендуемая технологическая схема установки очистки этанизированной ШФЛУ позволяет достигать остаточного содержания углекислого газа в целевом продукте не более 0,02 % мас.;
- Процесс очистки этанизированной ШФЛУ не требует больших капитальных и эксплуатационных затрат;
- Рекомендуемая схема не требует затрат на хранение,
 регенерацию и утилизацию реагентов (например, аминов).

БЛАГОДАРЮ ЗА ВНИМАНИЕ!